(2k+3)x-3 = 3(k+x)........
Si consideri l'equazione(2k+3)x-3 = 3(k+x)
Determinare il valore di k per i quali l'equazione ha una soluzione il cui valore assoluto è compreso tra 1 e 2
Grazie mille a ki me la sa fare....servirebbe x dmn....
Determinare il valore di k per i quali l'equazione ha una soluzione il cui valore assoluto è compreso tra 1 e 2
Grazie mille a ki me la sa fare....servirebbe x dmn....
Risposte
1
anke io l'avevo fatto cosi....ma la soluz del libro è :
k
k
le soluzioni così son date dal sitema di tutto!ma il testo sei sicuro che è giusto?non è che è(2k+3)(x-3)??
no...ho copiato bene...forse è sbagliata prp la traccia...
poi c'è anke questa:
determinare i valori di k per i quali l'equaz ha una soluzione il cui val assoluto è minore o uguale a 5
poi c'è anke questa:
[math](1-k)|x|+(2-k)(x+2)=0[/math]
determinare i valori di k per i quali l'equaz ha una soluzione il cui val assoluto è minore o uguale a 5
fai cm ho fatto io prima!!!
ok grz mille
(2k+3)x-3=3(k+x)
2kx+3x-3=3k+3x
2kx=3k+3
ora, come ha detto issima, devi porre
1
2kx+3x-3=3k+3x
2kx=3k+3
[math]x=\frac32\cdot\frac{k+1}k[/math]
ora, come ha detto issima, devi porre
1
6 1 genio !!!!!!!!!!!!!!!!!!!!!
grande plum!!
Grazie a tt e 2 XDXDXD
:inchino
:lol:lol:lol
(1-k)|x|+(2-k)(x+2)=0
|x|-k|x|+2x+4-kx-2k=0
distingui 2 casi:
x -x+kx+2x+4-kx-2k=0
x=2k-4
visto che hai posto x
:lol:lol:lol
(1-k)|x|+(2-k)(x+2)=0
|x|-k|x|+2x+4-kx-2k=0
distingui 2 casi:
x -x+kx+2x+4-kx-2k=0
x=2k-4
visto che hai posto x
nn so come ringraziarti plum sei un grandee!!!!!!!!!!
prego (anche da parte di issima):)
chiudo
chiudo
Questa discussione è stata chiusa