Problemi sulle equazioni di 1° grado
Ciao, volevo chiedervi se potevate risolvere questi problemi con la SPIEGAZIONE!! perchè li ho trovati su yahoo ma senza spiegazione...
un numero è composto da due cifre la cui somma è 7 .scambiando la cifra delle decine con quella delle unità si ottiene un numero che supera di 9 il numero dato. calcola tale numero (il risultato dovrebbe essere 34)
Aggiunto 2 minuti più tardi:
determina un numero tale che, togliendo 27 dl quadrato del suo triplo, si ottiene il quadrato del suo successivo (il risultato è -2)
Aggiunto 6 minuti più tardi:
aggiungendo uno stesso numero rispettivamente a 10, a 2, a 40 e a 4 si ottiene, nell'ordine, una proporzione. calcola tale numero.
Aggiunto 5 minuti più tardi:
la differenza fra due numeri è 14. Se si divide per 5 la differenza fra i 3/4 del maggiore e i 2/3 del minore, si ottiene 2 come quoziente e 3 come resto. Calcola i due numeri.
un numero è composto da due cifre la cui somma è 7 .scambiando la cifra delle decine con quella delle unità si ottiene un numero che supera di 9 il numero dato. calcola tale numero (il risultato dovrebbe essere 34)
Aggiunto 2 minuti più tardi:
determina un numero tale che, togliendo 27 dl quadrato del suo triplo, si ottiene il quadrato del suo successivo (il risultato è -2)
Aggiunto 6 minuti più tardi:
aggiungendo uno stesso numero rispettivamente a 10, a 2, a 40 e a 4 si ottiene, nell'ordine, una proporzione. calcola tale numero.
Aggiunto 5 minuti più tardi:
la differenza fra due numeri è 14. Se si divide per 5 la differenza fra i 3/4 del maggiore e i 2/3 del minore, si ottiene 2 come quoziente e 3 come resto. Calcola i due numeri.
Risposte
Ciao!
Posta un tuo tentativo.
Posta un tuo tentativo.
va bene se ne parliamo via mp?
comunque non ho fatto tentativi perchè non ho nemmeno un idea di come potrei fare!
comunque non ho fatto tentativi perchè non ho nemmeno un idea di come potrei fare!
Senti, oggi è il mio compleanno, quindi non posso aiutarti per il momento; se ti va bene se ne parla per Martedì.
ok
Il primo esercizio può essere risolto intuitivamente anche a mente, ma immagino tu debba usare le equazioni.
Ti propongo una soluzione.
Chiamiamo
Sappiamo che la somma delle cifre è pari a
da cui (applicando i principi di equivalenza) ricaviamo
Ora, sappiamo anche che il numero formato da
Avendo però espresso
Non ci resta che risolvere l'equazione:
Riprendiamo quindi la primissima equazione per calcolare
Le due cifre sono
Ti propongo una soluzione.
Chiamiamo
[math]x_D[/math]
e [math]x_U[/math]
le cifre che devi trovare, tali da formare un numero che abbia [math]x_D[/math]
nella posizione delle decine e [math]x_U[/math]
nella posizione delle unità.Sappiamo che la somma delle cifre è pari a
[math]7[/math]
, perciò possiamo scrivere:[math]x_D + x_U = 7[/math]
da cui (applicando i principi di equivalenza) ricaviamo
[math]x_D[/math]
in funzione di [math]x_U[/math]
(potremmo fare anche il contrario):[math]x_D = 7 - x_U[/math]
Ora, sappiamo anche che il numero formato da
[math]x_D[/math]
decine e da [math]x_U[/math]
unità è più piccolo di [math]9[/math]
rispetto al numero formato (invertendo le cifre) da [math]x_U[/math]
decine e da [math]x_D[/math]
unità, perciò possiamo scrivere:[math]10x_U + x_D = 10x_D + x_U + 9[/math]
Avendo però espresso
[math]x_D[/math]
in funzione di [math]x_U[/math]
possiamo sostituirlo in quest'ultima equazione, così da avere una sola incognita:[math]10x_U + (7 - x_U) = 10(7 - x_U) + x_U + 9[/math]
Non ci resta che risolvere l'equazione:
[math]10x_U + (7 - x_U) = 10(7 - x_U) + x_U + 9[/math]
[math]10x_U + 7 - x_U = 70 - 10x_U + x_U + 9[/math]
[math]9x_U + 7 = 79 - 9x_U[/math]
[math]9x_U + 9x_U = 79 - 7[/math]
[math]18x_U = 72[/math]
[math]x_U = 72/18 = 4[/math]
Riprendiamo quindi la primissima equazione per calcolare
[math]x_D[/math]
:[math]x_D = 7 - x_U = 7 - 4 = 3[/math]
Le due cifre sono
[math]3[/math]
e [math]4[/math]
, perciò il numero cercato è [math]34[/math]
, che è infatti inferiore di [math]9[/math]
unità rispetto al suo inverso [math]43[/math]
.
Un numero di due cifre è formato da decine e da unità.
45 = 40 + 5 = 4*10 + 5 ( l'asterisco * sta per la moltiplicazione)
In generale un numero di due cifre possiamo scriverlo
a*10 + b
se la somma delle due cifre è 7 allora
a + b = 7
da cui ricavo che
b = 7 - a
Quindi il mio numero generico lo posso scrivere
10a + (7 - a)
Se scambio le cifre il secondo numero sarà
10(7 - a) + a
se il secondo numero supera il primo di 9 avremo
10(7 - a) + a = 10a + (7 - a) + 9
facendo i conti
70 - 10a + a = 10a + 7 - a +9
70 - 9a = 9a + 16
70 a sinistra è SOMMATO, lo porto a destra diventa SOTTRATTO
9a a destra è SOMMATO, lo porto a sinistra e diventa SOTTRATTO
-9a - 9a = 16 - 70
-18a = -54
siccome voglio un valore positivo cambio TUTTI i segni di TUTTI i termini (moltiplicando TUTTI i termini a sinistra e a destra per -1)
18a = 54
il 18 a sinistra è MOLTIPLICATO, lo porto a destra e diventa DIVISO
a = 54/18 = 3
ore ricordati che
b = 7 - a = 7 - 3 = 4
Quindi
10a + b = 10*3 + 4 = 30 + 4 = 34
Ricordati che per portare un termine da una parte all'altra del segno = devi INVERTIRE l'operazione e NON CAMBIARE DI SEGNO.
Se visiti il mio sito gratuito www.matematica-mente.it nel primo capitolo sulle operazioni puoi trovare queste spiegazioni basilari e soprattutto il perché. Ciao (spero di essere stato chiaro)
45 = 40 + 5 = 4*10 + 5 ( l'asterisco * sta per la moltiplicazione)
In generale un numero di due cifre possiamo scriverlo
a*10 + b
se la somma delle due cifre è 7 allora
a + b = 7
da cui ricavo che
b = 7 - a
Quindi il mio numero generico lo posso scrivere
10a + (7 - a)
Se scambio le cifre il secondo numero sarà
10(7 - a) + a
se il secondo numero supera il primo di 9 avremo
10(7 - a) + a = 10a + (7 - a) + 9
facendo i conti
70 - 10a + a = 10a + 7 - a +9
70 - 9a = 9a + 16
70 a sinistra è SOMMATO, lo porto a destra diventa SOTTRATTO
9a a destra è SOMMATO, lo porto a sinistra e diventa SOTTRATTO
-9a - 9a = 16 - 70
-18a = -54
siccome voglio un valore positivo cambio TUTTI i segni di TUTTI i termini (moltiplicando TUTTI i termini a sinistra e a destra per -1)
18a = 54
il 18 a sinistra è MOLTIPLICATO, lo porto a destra e diventa DIVISO
a = 54/18 = 3
ore ricordati che
b = 7 - a = 7 - 3 = 4
Quindi
10a + b = 10*3 + 4 = 30 + 4 = 34
Ricordati che per portare un termine da una parte all'altra del segno = devi INVERTIRE l'operazione e NON CAMBIARE DI SEGNO.
Se visiti il mio sito gratuito www.matematica-mente.it nel primo capitolo sulle operazioni puoi trovare queste spiegazioni basilari e soprattutto il perché. Ciao (spero di essere stato chiaro)
risolvereste pure gli altri? grazie
Aggiunto 3 secondi più tardi:
risolvereste pure gli altri? grazie
Aggiunto 3 secondi più tardi:
risolvereste pure gli altri? grazie
La mia risposta ti è sembrata chiara?
Aggiunto più tardi:
La mia risposta ti è sembrata chiara?
Aggiunto 45 minuti più tardi:
Proporzione
a : b = c : d
proprietà delle proporzioni
il prodotto dei termini medi è uguale al prodotto dei termini esterni, cioè
a x d = b x c
Aggiungiamo lo stesso numero (incognito) a tutti e quattro questi numeri:
10 + x
2 + x
40 + x
4 + x
la proporzione che cerchiamo è dunque:
(10 + x) : (2 + x) = (40 + x) : (4 + x)
e applichiamo la proprietà:
(10 + x)(4 + x) = (2 + x)(40 + x)
facendo i conti troviamo:
40 + 10x + 4x + x2 = 80 + 2x + 40x + x2
attenzione. "x2" vuol dire "x al quadrato" perché non riesco a scriverlo giusto con questo mini-programma di scrittura
siccome "x2" a destra si elimina con "x2" a sinistra, rimane una equazione di primo grado, quindi porto tutte le "x" a sinistra e i termini noti a destra ricordando che QUELLO CHE DA UNA PARTE E' SOMMATO DALL'ALTRA PARTE DIVENTA SOTTRATTO E VICEVERSA, avremo:
10x + 4x - 2x - 40x = 80 - 40
- 28x = 40
cambio TUTTI i segni (moltiplicando per -1)
28x = - 40
x = - 40/28 = - 10/7
Quindi devo "aggiungere" un numero negativo = - 10/7
(10 -10/7) . (2 - 10/7) = (40 -10/7) : (4 - 10/7)
60/7 : 4/7 = 270/7 : 18/7
VERIFICA:
moltiplicando TUTTI i termini per 7 trovi
60 : 4 = 270 : 18
60 x 18 = 4 x 270 ( x sta per "moltiplicato" )
1080 = 1080
Aggiunto 37 minuti più tardi:
la differenza tra due numeri è 14 si traduce in termini algebrici così:
A - B = 14
da cui ricavo
A = 14 + B ( B a sin. era SOTTRATTO, a destra diventa SOMMATO)
o se preferisci
A = B + !4
quindi A è più grande di B
i 3/4 del più grande si scrivono
3/4(A) cioè 3/4(B + 14)
i 2/3 del numero minore sono
2/3(B)
ora facciamo la loro differenza:
3/4(B + 14) - 3/4(B)
Ora l'altro problema:
se faccio 44:6 trovo il quoziente Q = 7 e il resto R = 2
cioè
40 diviso 6 fa 7 col resto di due
( ricordi la canzoncina "44 gatti" in fila per sei col resto di due? )
Quindi
44 = 6 x 7 + 2
cioè un numero "A"è uguale al prodotto del DIVISORE (D) moltiplicato per il QUOZIENTE (Q) più il RESTO (R), cioè:
A = D x Q + R
Quindi, se "la differenza dei 3/4 del ........." divisa per 5 dà il quoziente 2 e il resto 3, vuol dire che:
"la differenza......." = 5 x 2 + 3 = 10 + 3 = 13
Uniamo le due informazioni e troviamo:
3/4(B + 14) - 2/3(B) = 13
moltiplichiamo TUTTI i termini per il m.c.m = 12 e troviamo
3x3(B + 14) - 4x2(B) = 12x13 ( "x" sta per "moltiplicato" )
9(B + 14) - 8B = 156
9B + 126 - 8B = 156
B + 126 = 156
B = 156 - 126
B = 30
quindi
A = B + 14 = 44
RIPROVA:
3/4(44) - 2/3(30) = 3x11 - 2x10 = 33 - 20 = 13
Visita il mio sito gratuito www.matematica-mente.it e poi, se vuoi, fammi sapere via mail carlogiannini@email.it che ne pensi, e anche se le mie spiegazioni ti sono risultate chiare o no.
Aggiunto 1 ora 1 minuto più tardi:
per trovare un numero tale che, togliendo 27 dl quadrato del suo triplo ecc. ecc. bisogna partire dalla fine e tornare indietro
prendo un numero
x
faccio il triplo
3x
faccio il quadrato ( di TUTTO )
(3x)2 ( il 2 rosso è l'esponente )
e poi sottraggo 27
(3x)2 - 27
9x2 - 27
il numero successivo di x è quello "dopo" cioè
x + 1
ed il suo quadrato è
(x + 1)2
uniamo le due informazioni e troviamo
9x2 - 27 = (x + 1)2
Facciamo i conti
9x2 - 27 = x2 + 1 + 2x
questa è una equazione di secondo grado quindi portiamo tutto a sinistra (ricordati che NON SI CAMBIA DI SEGNO ma si invertono le operazioni
9x2 - 27 - x2 - 1 - 2x = 0
8x2 - 2x - 28 = 0
dividiamo tutto per due
4x2 - x - 14 = 0
Ora bisogna usare la formula per risolver le eq. di secondo grado:
meno b più o meno radice quadrata .....ecc
e troviamo due soluzioni
x1 = 2
x2 = -14/8
siccome si parla di due numeri consecutivi, vuol dire implicitamente che sono due numeri INTERI, quindi scartiamo la soluzione x = -14/8 e ci rimane la risposta
x = 2
N.B. la risposta "-2" è sbagliata, perché il numero successivo si trova SEMPRE aggiungendo +1, quindi il successivo di -2 è
-2 + 1 = -1
e se facciamo la riprova
togliendo 27 dl quadrato del suo triplo, si ottiene
[3(-2)]2 - 27 = (-6)2 - 27 = +36 - 27 = 9
invece il quadrato del suo successivo fa
(-2 +1)2 = ( -1)2 = +1
Aggiunto 14 ore 29 minuti più tardi:
Come in ogni cosa nella matematica, per risolvere questi problemi bisogna capire la logica da seguire. Ti faccio un esempio semplice NON ALGEBRICO:
chi è il FIGLIO del MARITO di MIA MADRE?
Anche se è facile capirlo al volo, vediamo come si procede in modo logico:
Come sempre, partiamo dall'ultima informazione e procediamo a ritroso
MADRE + MARITO = PADRE (il MARITO di mia MADRE è il mio PADRE)
PADRE + FIGLIO = FRATELLO (il figlio di mio PADRE è mio FRATELLO)
Lo stesso nei problemi ALGEBRICI
il doppio del triplo del quadruplo di un numero fa 24
numero = x
quadruplo del numero = 4x
triplo del quadruplo = 3(4x)
il doppio del triplo del quadruplo = 2[3(4x)]
Quindi:
2[3(4x)] = 24
2[12x] = 24
24x = 24
x = 1
Aggiunto più tardi:
La mia risposta ti è sembrata chiara?
Aggiunto 45 minuti più tardi:
Proporzione
a : b = c : d
proprietà delle proporzioni
il prodotto dei termini medi è uguale al prodotto dei termini esterni, cioè
a x d = b x c
Aggiungiamo lo stesso numero (incognito) a tutti e quattro questi numeri:
10 + x
2 + x
40 + x
4 + x
la proporzione che cerchiamo è dunque:
(10 + x) : (2 + x) = (40 + x) : (4 + x)
e applichiamo la proprietà:
(10 + x)(4 + x) = (2 + x)(40 + x)
facendo i conti troviamo:
40 + 10x + 4x + x2 = 80 + 2x + 40x + x2
attenzione. "x2" vuol dire "x al quadrato" perché non riesco a scriverlo giusto con questo mini-programma di scrittura
siccome "x2" a destra si elimina con "x2" a sinistra, rimane una equazione di primo grado, quindi porto tutte le "x" a sinistra e i termini noti a destra ricordando che QUELLO CHE DA UNA PARTE E' SOMMATO DALL'ALTRA PARTE DIVENTA SOTTRATTO E VICEVERSA, avremo:
10x + 4x - 2x - 40x = 80 - 40
- 28x = 40
cambio TUTTI i segni (moltiplicando per -1)
28x = - 40
x = - 40/28 = - 10/7
Quindi devo "aggiungere" un numero negativo = - 10/7
(10 -10/7) . (2 - 10/7) = (40 -10/7) : (4 - 10/7)
60/7 : 4/7 = 270/7 : 18/7
VERIFICA:
moltiplicando TUTTI i termini per 7 trovi
60 : 4 = 270 : 18
60 x 18 = 4 x 270 ( x sta per "moltiplicato" )
1080 = 1080
Aggiunto 37 minuti più tardi:
la differenza tra due numeri è 14 si traduce in termini algebrici così:
A - B = 14
da cui ricavo
A = 14 + B ( B a sin. era SOTTRATTO, a destra diventa SOMMATO)
o se preferisci
A = B + !4
quindi A è più grande di B
i 3/4 del più grande si scrivono
3/4(A) cioè 3/4(B + 14)
i 2/3 del numero minore sono
2/3(B)
ora facciamo la loro differenza:
3/4(B + 14) - 3/4(B)
Ora l'altro problema:
se faccio 44:6 trovo il quoziente Q = 7 e il resto R = 2
cioè
40 diviso 6 fa 7 col resto di due
( ricordi la canzoncina "44 gatti" in fila per sei col resto di due? )
Quindi
44 = 6 x 7 + 2
cioè un numero "A"è uguale al prodotto del DIVISORE (D) moltiplicato per il QUOZIENTE (Q) più il RESTO (R), cioè:
A = D x Q + R
Quindi, se "la differenza dei 3/4 del ........." divisa per 5 dà il quoziente 2 e il resto 3, vuol dire che:
"la differenza......." = 5 x 2 + 3 = 10 + 3 = 13
Uniamo le due informazioni e troviamo:
3/4(B + 14) - 2/3(B) = 13
moltiplichiamo TUTTI i termini per il m.c.m = 12 e troviamo
3x3(B + 14) - 4x2(B) = 12x13 ( "x" sta per "moltiplicato" )
9(B + 14) - 8B = 156
9B + 126 - 8B = 156
B + 126 = 156
B = 156 - 126
B = 30
quindi
A = B + 14 = 44
RIPROVA:
3/4(44) - 2/3(30) = 3x11 - 2x10 = 33 - 20 = 13
Visita il mio sito gratuito www.matematica-mente.it e poi, se vuoi, fammi sapere via mail carlogiannini@email.it che ne pensi, e anche se le mie spiegazioni ti sono risultate chiare o no.
Aggiunto 1 ora 1 minuto più tardi:
per trovare un numero tale che, togliendo 27 dl quadrato del suo triplo ecc. ecc. bisogna partire dalla fine e tornare indietro
prendo un numero
x
faccio il triplo
3x
faccio il quadrato ( di TUTTO )
(3x)2 ( il 2 rosso è l'esponente )
e poi sottraggo 27
(3x)2 - 27
9x2 - 27
il numero successivo di x è quello "dopo" cioè
x + 1
ed il suo quadrato è
(x + 1)2
uniamo le due informazioni e troviamo
9x2 - 27 = (x + 1)2
Facciamo i conti
9x2 - 27 = x2 + 1 + 2x
questa è una equazione di secondo grado quindi portiamo tutto a sinistra (ricordati che NON SI CAMBIA DI SEGNO ma si invertono le operazioni
9x2 - 27 - x2 - 1 - 2x = 0
8x2 - 2x - 28 = 0
dividiamo tutto per due
4x2 - x - 14 = 0
Ora bisogna usare la formula per risolver le eq. di secondo grado:
meno b più o meno radice quadrata .....ecc
e troviamo due soluzioni
x1 = 2
x2 = -14/8
siccome si parla di due numeri consecutivi, vuol dire implicitamente che sono due numeri INTERI, quindi scartiamo la soluzione x = -14/8 e ci rimane la risposta
x = 2
N.B. la risposta "-2" è sbagliata, perché il numero successivo si trova SEMPRE aggiungendo +1, quindi il successivo di -2 è
-2 + 1 = -1
e se facciamo la riprova
togliendo 27 dl quadrato del suo triplo, si ottiene
[3(-2)]2 - 27 = (-6)2 - 27 = +36 - 27 = 9
invece il quadrato del suo successivo fa
(-2 +1)2 = ( -1)2 = +1
Aggiunto 14 ore 29 minuti più tardi:
Come in ogni cosa nella matematica, per risolvere questi problemi bisogna capire la logica da seguire. Ti faccio un esempio semplice NON ALGEBRICO:
chi è il FIGLIO del MARITO di MIA MADRE?
Anche se è facile capirlo al volo, vediamo come si procede in modo logico:
Come sempre, partiamo dall'ultima informazione e procediamo a ritroso
MADRE + MARITO = PADRE (il MARITO di mia MADRE è il mio PADRE)
PADRE + FIGLIO = FRATELLO (il figlio di mio PADRE è mio FRATELLO)
Lo stesso nei problemi ALGEBRICI
il doppio del triplo del quadruplo di un numero fa 24
numero = x
quadruplo del numero = 4x
triplo del quadruplo = 3(4x)
il doppio del triplo del quadruplo = 2[3(4x)]
Quindi:
2[3(4x)] = 24
2[12x] = 24
24x = 24
x = 1