Probema geometria 2 media
Buona sera, ho un problema che non riesco a risolvere
perchè non trovo la formula da applicare. Ecco il testo:
In un trapezio rettangolo l'angolo acuto è ampio 60°. Sapendo che la base minore e la base maggiore misurano rispettivamente 25 cm e 35 cm, calcola il perimetro e l'area del trapezio.
Vorrei capire come utilizzare l'ampiezza dell'angolo del triangolo.
Grazie per quanti vorranno aiutarmi

In un trapezio rettangolo l'angolo acuto è ampio 60°. Sapendo che la base minore e la base maggiore misurano rispettivamente 25 cm e 35 cm, calcola il perimetro e l'area del trapezio.
Vorrei capire come utilizzare l'ampiezza dell'angolo del triangolo.
Grazie per quanti vorranno aiutarmi

Risposte
Allora...
Puoi tracciare l'altezza relativa alla base maggiore dalla parte del lato obliquo. Ottieni un triangolo rettangolo.
Di questo triangolo conosci un cateto ( 35-25) 10.
Inoltre questo triangolo rettangolo avendo un angolo di 60° e un altro di (90-60) di 30° è la metà di un triangolo equilatero.......
I problemi non si risolvono cercando una formula magica, ma ragionando.....
Puoi tracciare l'altezza relativa alla base maggiore dalla parte del lato obliquo. Ottieni un triangolo rettangolo.
Di questo triangolo conosci un cateto ( 35-25) 10.
Inoltre questo triangolo rettangolo avendo un angolo di 60° e un altro di (90-60) di 30° è la metà di un triangolo equilatero.......
I problemi non si risolvono cercando una formula magica, ma ragionando.....

Ho trovato l'altezza del triangolo con la formula h= l x 0,866 cioè 20 x 0,866=14,99
Adesso penso di poter proseguire. Grazie mille
Adesso penso di poter proseguire. Grazie mille

"Elena2003":
Ho trovato l'altezza del triangolo cioè 20 x 0,866=14,99
????????????
Si vede che sei vecchio.
Non ti ricordi più che alla scuola media per trovare l'altezza di un triangolo equilatero si moltiplica il lato per un numero fisso? E che quel numero fisso è semplicemente il valore arrotondato al terzo decimale di $sqrt3/2$ ?

Non ti ricordi più che alla scuola media per trovare l'altezza di un triangolo equilatero si moltiplica il lato per un numero fisso? E che quel numero fisso è semplicemente il valore arrotondato al terzo decimale di $sqrt3/2$ ?
Esiste un medoto alternativo visto che al_berto non ricordava questo? Mi ricordate qual è?
Grazie mille.
Grazie mille.
In un triangolo equilatero l'altezza è uguale al prodotto tra il lato e $sqrt3/2$ che tradotto in forma decimale è il tuo numero fisso. Alle superiori i radicali non esatti vengono lasciati indicati, non tradotti in decimali. per questo motivo al_berto non aveva riconosciuto il coefficiente.
Il problema si risolve anche con Pitagora.
Il problema si risolve anche con Pitagora.
Sì sono vecchio, ci sono altri però più più vecchi di me!
Ma non sono rimbambito: a casa mia $20*0.866=17.32$ e NON $ 14.99$. I punti interrogativi si rivolgevano a questo errore, non al numero fisso.
I numeri fissi non mi sono mai stati simpatici, perchè mi pare di fare una cosa senza capire perchè. A pappagallo!
Secondo me lì ci sta bene un bel Teorema di Pitagora, è più schietto e genuino!
Comunque mi inchino ad @melia che apprezzo e ammiro perchè pur trattando di problemi per me incomprensibili e veramente difficili non dimentica le cose genuine ed elementari della matematica.
Con simpatia
Ma non sono rimbambito: a casa mia $20*0.866=17.32$ e NON $ 14.99$. I punti interrogativi si rivolgevano a questo errore, non al numero fisso.
I numeri fissi non mi sono mai stati simpatici, perchè mi pare di fare una cosa senza capire perchè. A pappagallo!
Secondo me lì ci sta bene un bel Teorema di Pitagora, è più schietto e genuino!
Comunque mi inchino ad @melia che apprezzo e ammiro perchè pur trattando di problemi per me incomprensibili e veramente difficili non dimentica le cose genuine ed elementari della matematica.
Con simpatia

Veramente quella sull'età voleva essere una battuta, perché sono vecchia anch'io