Quasi ingegnere curioso
studio ingegneria indirizzo industriale e mi piacerebbe arricchire la mia personale biblioteca di matematica, la trovo una cosa "confortevole" del tipo" non so una cosa? no problem basta cercarla sul libro"
corsi sostenuti: analisi I, analisII, geometria e aalgebra lineare e Calcolo combinatorio.
Mi interessano soprattutto argomenti legati alla matematica cosiddetta applicata, ovviamente senza tralasciare le premesse astratte strettamente necessarie, ad un livello stile infarinatura generale dei risultati e concetti importanti e non troppo specialistici.
Quali argomenti e relativi libri mi consigliate? anche un link va benissimo (anzi meglio
)
grazie mille
corsi sostenuti: analisi I, analisII, geometria e aalgebra lineare e Calcolo combinatorio.
Mi interessano soprattutto argomenti legati alla matematica cosiddetta applicata, ovviamente senza tralasciare le premesse astratte strettamente necessarie, ad un livello stile infarinatura generale dei risultati e concetti importanti e non troppo specialistici.
Quali argomenti e relativi libri mi consigliate? anche un link va benissimo (anzi meglio

grazie mille
Risposte
Dipende un po' dal tuo background, dai tuoi interessi, dal tipo di problemi che affronti nello studio... Secondo me, il Calcolo delle Variazioni è una parte dell'Analisi spiccatamente applicativa (molto "ingegneristica") e quindi potrebbe interessarti.
Se conosci un po' di Analisi e d'inglese, potresti provare con qualche libro di CdV: se vuoi un classico, ti consiglio il Gel'fand-Fomin, Calculus of Variations, Dover, mentre un buon testo più moderno è il (piccolo) Dacorogna, Introduction to Calculus of Variations, Springer; inoltre tra i vecchi testi della MIR c'è pure un libriccino di Calcolo delle Variazioni (copertina bianca con banda rossa) che è zeppo di esercizi, parecchi dei quali svolti.
Se conosci un po' di Analisi e d'inglese, potresti provare con qualche libro di CdV: se vuoi un classico, ti consiglio il Gel'fand-Fomin, Calculus of Variations, Dover, mentre un buon testo più moderno è il (piccolo) Dacorogna, Introduction to Calculus of Variations, Springer; inoltre tra i vecchi testi della MIR c'è pure un libriccino di Calcolo delle Variazioni (copertina bianca con banda rossa) che è zeppo di esercizi, parecchi dei quali svolti.
grazie mille gugo.
toglimi una curiosità: che differenza c'è tra l'analisi funzionale e il calcolo delle variazioni?
Topologia e geometria differenziale?
toglimi una curiosità: che differenza c'è tra l'analisi funzionale e il calcolo delle variazioni?
Topologia e geometria differenziale?
Dipende dai tuoi interessi, ma se vuoi alcuni spunti (da approfondire poi su altri testi) per la matematica applicata all’ingegneria puoi leggere:
J.N. Reddy , “Applied Functional Analysis and Variational Methods in Engineering” , McGraw-Hill.
J.N. Reddy , “Applied Functional Analysis and Variational Methods in Engineering” , McGraw-Hill.
grazie mille

che ne pensate dei testi del Sernesi Geometria 1 e 2? Li ho sfogliati e mi sembrano davvero ben fatti: un po euristici x qualche matematico ma di lettura sicuramente piacevole.
up
i testi del sernesi li tengo sul comodino al posto del santino della madonna da quanto sono grato al caro edoardo...
secondo me sono un qualcosa di ottimo.. poi prendi il mio commento con le pinze, cioè sono uno studente di ingegneria... magari un matematico non la penserà come me... cmq anche su molti libri e dispense delle facoltà di fisica usano il sernesi come referenza, vedi Guido Gentile, allievo di Gallavotti, e anche il fantastico "Meccanica Analitica" di Fasano e Marmi lo usano...
per quel che riguarda analisi mi affido a Enrico Giusti...di quest'ultimo ho la terza ed ultima edizione, rivista in base ai corsi universitari post riforma moratti... sarebbe da metter le mani sulla seconda edizione, 1989, per vedere com'era...

secondo me sono un qualcosa di ottimo.. poi prendi il mio commento con le pinze, cioè sono uno studente di ingegneria... magari un matematico non la penserà come me... cmq anche su molti libri e dispense delle facoltà di fisica usano il sernesi come referenza, vedi Guido Gentile, allievo di Gallavotti, e anche il fantastico "Meccanica Analitica" di Fasano e Marmi lo usano...
per quel che riguarda analisi mi affido a Enrico Giusti...di quest'ultimo ho la terza ed ultima edizione, rivista in base ai corsi universitari post riforma moratti... sarebbe da metter le mani sulla seconda edizione, 1989, per vedere com'era...
ecco qui c'è qualche matematico che mi da ragione..
allora posso stare tranquillo...
https://www.matematicamente.it/forum/lib ... 46460.html

https://www.matematicamente.it/forum/lib ... 46460.html
cmq anche io sono ing industriale... siamo colleghi.. tu dove la studi? io a trento...
studio a Pisa. specialistica in ing Meccanica
"Giacomo88":
per quel che riguarda analisi mi affido a Enrico Giusti...di quest'ultimo ho la terza ed ultima edizione, rivista in base ai corsi universitari post riforma moratti... sarebbe da metter le mani sulla seconda edizione, 1989, per vedere com'era...
Alquanto penosa...


"qwerty90":
[quote="Giacomo88"]
per quel che riguarda analisi mi affido a Enrico Giusti...di quest'ultimo ho la terza ed ultima edizione, rivista in base ai corsi universitari post riforma moratti... sarebbe da metter le mani sulla seconda edizione, 1989, per vedere com'era...
Alquanto penosa...


ah davvero? da quello che ha scritto l'autore pensavo il contrario... cos'ha di penoso la seconda ed?
"Giacomo88":
ah davvero? da quello che ha scritto l'autore pensavo il contrario... cos'ha di penoso la seconda ed?
E' lacunosa...Già nell'incipit manca la parte riguardante la logica... e poi molto altro (mi pare la parte sui punti interni,esterni e di frontiera, non è spiegata bene con le dimostrazioni come nella terza).
Io tra la seconda edizione e la terza ho preferito subito la terza, anche perchè il mio prof. usava quella e non riuscivo a seguirlo con in mano la seconda edizione.

Vedi un pò tu, anche perchè ogni persona ha il proprio libro "di riferimento" che va scelto bene.
