The scaling argument or "dimensional analysis"

gugo82
This easy exercise shows how a simple technique can be used to prove that certain relations (e.g. an inequality) cannot hold for all members of a chosen function space.

This technique is usually called scaling argument or (following the physicists) dimensional analysis: it relies on the comparison of homogeneity properties of the quantities involved in the relations under investigation.

***

Some definitions:


***

Exercise:

Let [tex]$N\in \mathbb{N}$[/tex], [tex]$p \in ]0,+\infty[$[/tex], [tex]$q\in [1,N[$[/tex] and [tex]$q^*:=\tfrac{Nq}{N-q}$[/tex].

Prove that if [tex]$p\neq q^*$[/tex] then there cannot exists any universal constant [tex]$C>0$[/tex] s.t. the inequality (of Sobolev type):

[tex]$\lVert u\rVert_p \leq C\ \lVert \text{D} u \rVert_q$[/tex]

holds for all [tex]$u\in C_c^\infty (\mathbb{R}^N)$[/tex].

Risposte
dissonance
I have found an easy-to-read and entertaining explanation of this technique in Sanjoy Mahajan's book Street Fighting Mathematics (follow the "Download with Creative Commons License" link). Dimensional analysis makes up for the first chapter.

Leonardo891
"gugo82":
I write all my post without any WYSIWYG support but the "Anteprima" button. :-D

Wow! :D And also with the tex tag! :o

gugo82
@Leonardo89: Ok! Correct. :smt023

By the way, you're right: actually there is an error in the text!
The correct one is the following:

Let [tex]$N\in \mathbb{N}$[/tex], [tex]$q\in [1,N[$[/tex] and [tex]$p\in ]0,+\infty[$[/tex].

Prove that if [tex]$p\neq q^*:=\tfrac{Nq}{N-q}$[/tex] then there cannot exist any constant [tex]$C>0$[/tex] s.t. the inequality (of Sobolev type):

[tex]$\lVert u\rVert_p \leq C\ \lVert \text{D} u \rVert_q$[/tex]

holds for all [tex]$u\in C_c^\infty (\mathbb{R}^N)$[/tex].

I'm sorry; when I was writing down the exercise I was really distracted by other problems...

***

"Leonardo89":
Apropos of the problem, Gugo, did you write all of it manually typing the code or did you use a WYSIWYG software?

I write all my post without any WYSIWYG support but the "Anteprima" button. :-D


P.S.: The exponent [tex]$q^*$[/tex] is called the Sobolev conjugate of [tex]$q$[/tex]. By definition, it is the number s.t. [tex]$\tfrac{1}{q} =\tfrac{1}{q^*} +\tfrac{1}{N}$[/tex].

Leonardo891
My try...

[tex]$\lVert u_{\lambda} \rVert_p = \left\{ \int_{\mathbb{R}^N} |u_{\lambda} (x)|^p\ \text{d} x\right\}^\frac{1}{p}=\left\{ \int_{\mathbb{R}^N} |v \left( \frac{x}{\lambda} \right) | ^p\ \text{d} x\right\}^\frac{1}{p}$[/tex]

By a change of variables $x= \lambda y $

[tex]$\lVert u_{\lambda} \rVert_p =\left\{ \int_{\mathbb{R}^N} |v \left( y \right) |^p\ \lambda^N \ \text{d} y\right\}^\frac{1}{p}=\lambda^{ \frac{N}{p} } \left\{ \int_{\mathbb{R}^N} |v \left( y \right) |^p\ \text{d} y\right\}^\frac{1}{p}= \lambda^{ \frac{N}{p}} \lVert v \rVert_p$[/tex]

[tex]$\lVert \text{D} u_{\lambda} \rVert_q = \left\{ \int_{\mathbb{R}^N} | \text{D} u_{\lambda} (x)|^q\ \text{d} x\right\}^\frac{1}{q}=\left\{ \int_{\mathbb{R}^N} | \text{D} v \left( \frac{x}{\lambda} \right) | ^q\ \text{d} x\right\}^\frac{1}{q}=$[/tex]

For the theorem of differentiation of composite functions

[tex]$=\left\{ \int_{\mathbb{R}^N} | \left( ( \text{D} v ) \left( \frac{x}{\lambda} \right) \right) \frac{1}{\lambda} | ^q\ \text{d} x\right\}^\frac{1}{q}=\left\{ \int_{\mathbb{R}^N} | \left( ( \text{D} v ) \left( \frac{x}{\lambda} \right) \right) | ^q\ \ \left( \frac{1}{\lambda} \right)^q \ \text{d} x\right\}^\frac{1}{q}$[/tex]

By the same change of variables $x= \lambda y $

[tex]$\lVert \text{D} u_{\lambda} \rVert_q =\left\{ \int_{\mathbb{R}^N} | \left( ( \text{D} v ) \left( y \right) \right) | ^q\ \ \left( \frac{1}{\lambda} \right)^q \ \lambda^N \ \text{d} y\right\}^\frac{1}{q}= \lambda^{ \frac{N}{q}-1} \lVert \text{D} v \rVert_q $[/tex]

Then [tex]$\mathcal{R}[u_{\lambda}]=\tfrac{\lVert \text{D} u_{\lambda} \rVert_q}{\lVert u_{\lambda} \rVert_p}=\tfrac{\lVert \text{D} v \rVert_q }{\lVert v \rVert_p} \lambda^{ \frac{N(p-q)-qp}{qp}} $[/tex] where [tex]$\tfrac{\lVert \text{D} v \rVert_q }{\lVert v \rVert_p} \in \mathbb{R} $[/tex] is fixed.

If $\frac{N(p-q)-qp}{qp}>0$, [tex]$\lim_{\lambda \to 0} \mathcal{R}[u_{\lambda}]=\lim_{\lambda \to 0} \tfrac{\lVert \text{D} v \rVert_q }{\lVert v \rVert_p} \lambda^{ \frac{N(p-q)-qp}{qp}} = 0 $[/tex] therefore [tex]$\mathcal{R}[u_{\lambda}]$[/tex] isn't bounded from below in [tex]$C_c^\infty$[/tex] and this is absurd.

If $\frac{N(p-q)-qp}{qp}<0$, [tex]$\lim_{\lambda \to \infty} \mathcal{R}[u_{\lambda}]=\lim_{\lambda \to \infty} \tfrac{\lVert \text{D} v \rVert_q }{\lVert v \rVert_p} \lambda^{ \frac{N(p-q) -qp}{qp}} = 0 $[/tex] therefore [tex]$\mathcal{R}[u_{\lambda}]$[/tex] isn't bounded from below in [tex]$C_c^\infty$[/tex] and this is absurd.

If $\frac{N(p-q)-qp}{qp}=0$ there's a problem...

Apropos of the problem, Gugo, did you write all of it manually typing the code or did you use a WYSIWYG software?

gugo82
I don't know why no one tried to solve this exercise... I think it's easier than any other one i posted before.

***

If you're in trouble with partial derivatives, then try to solve at least the onedimensional version:

Exercise (onedimensional version):

Let [tex]$p\neq q \in ]0,+\infty[$[/tex].
Prove that there cannot exists a constant [tex]$C>0$[/tex] s.t. the inequality:

[tex]$\lVert u\rVert_p\leq C\ \lVert u^\prime \rVert_q$[/tex]*

holds true for all [tex]$u\in C_c^\infty (\mathbb{R})$[/tex].


***

Come on...


__________
* Remember that:

[tex]$\lVert u\rVert_p:=\left\{ \int_{-\infty}^{+\infty} |u(x)|^p\ \text{d} x\right\}^\frac{1}{p}$[/tex] and [tex]$\lVert u^\prime \rVert_q:=\left\{ \int_{-\infty}^{+\infty} |u^\prime (x)|^q\ \text{d} x\right\}^\frac{1}{q}$[/tex]

and that the two integrals can be thought as Riemann integrals of continuous functions vanishing outside a suitable compact set.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.