Some infinite series
Problem:
Find the sum of the series:
\[
\begin{align}
& \sum_{n=0}^\infty \frac{n^4}{n!} \\
& \sum_{n=0}^\infty \frac{(n+1)^2}{n!}\\
& \sum_{n=0}^\infty \frac{(n+1)^3}{n!}\; .
\end{align}
\]
Find the sum of the series:
\[
\begin{align}
& \sum_{n=0}^\infty \frac{n^4}{n!} \\
& \sum_{n=0}^\infty \frac{(n+1)^2}{n!}\\
& \sum_{n=0}^\infty \frac{(n+1)^3}{n!}\; .
\end{align}
\]
Risposte
I would like to suggest a problem, too:
Using \( \sum_{n=1}^\infty \frac{1}{n^2}= \frac{\pi^2}{6} \), compute \[ \sum_{n=1}^\infty \frac{1}{(n+2)^2} \left( \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)}\right). \]
"gugo82":
Problem:
Find the sum of the series:
\[ \begin{align} & \sum_{n=0}^\infty \frac{n^4}{n!} \\ & \sum_{n=0}^\infty \frac{(n+1)^2}{n!}\\ & \sum_{n=0}^\infty \frac{(n+1)^3}{n!}\; . \end{align} \]
***
Addendum:
Is it possibile to write down an explicit formula for $sum_(n=0)^oo (n+k)^2/(n!)$ and $sum_(n=0)^oo (n+k)^3/(n!)$ (with $k in NN$)?
And what about a formula for $sum_(n=0)^oo (n+1)^h/(n!)$ (with $h in NN$)?