On the first eigenvalue of Laplace operator

gugo82
Exercise:

Let [tex]$a,b\in ]0,+\infty[$[/tex] and [tex]$\Omega (a,b):=]0,a[\times ]0,b[$[/tex].

1. Find the eigenvalues of the Laplace operator with homogeneous Dirichlet boundary conditions in [tex]$\Omega (a,b)$[/tex], i.e. the numbers [tex]$\lambda$[/tex] s.t. problem:

(*) [tex]$\begin{cases} -\Delta u=\lambda u &\text{, in } \Omega (a,b) \\ u=0 &\text{, on } \partial \Omega (a,b)\end{cases}$[/tex]

has some nontrivial solution.

2. Let [tex]$|E|$[/tex] denote the area of a measurable set [tex]$E\subseteq \mathbb{R}^2$[/tex] and set:

[tex]$\lambda_1(a,b):=\min \{ \lambda >0:\ \text{problem (*) has some nontrivial solution}\}$[/tex];

[tex]$\lambda_1(a,b)$[/tex] is called the first eigenvalue of the Laplace operator with Dirichlet homogeneous boundary conditions in [tex]$\Omega (a,b)$[/tex].
Prove that:

[tex]$\lambda_1 (l,l)=\min \{ \lambda_1 (a,b),\ |\Omega (a,b)|=l^2\}$[/tex],

that is, among all rectangles having area [tex]$l^2$[/tex], the square has the least possible first eigenvalue.



***

The result in 2 has a simple physical meaning: among all rectangular drums of given area, the square drum has the lowest principal tone.

Risposte
gugo82
"gugo82":
3. Compare the value [tex]$\lambda_1(l,l)$[/tex] with the first Dirichlet Laplacian's eigenvalue in the open disc having area [tex]$l^2$[/tex], i.e. with the number:

[tex]$\lambda_1^\star (l) := \min \{ \lambda >0:\ \text{problem (**) has nontrivial solutions}\}$[/tex]

where:

(**) [tex]$\begin{cases} -\Delta u=\lambda u &\text{, in } D(l) \\ u=0 &\text{, on } \partial D(l)\end{cases}$[/tex]

([tex]$D(l)$[/tex] is the open disc centered in the origin with [tex]$|D(l)|=l^2$[/tex]).

Here's the solution.

gugo82
I provide the solution to the second question.


***

3. Compare the value [tex]$\lambda_1(l,l)$[/tex] with the first Dirichlet Laplacian's eigenvalue in the open disc having area [tex]$l^2$[/tex], i.e. with the number:

[tex]$\lambda_1^\star (l) := \min \{ \lambda >0:\ \text{problem (**) has nontrivial solutions}\}$[/tex]

where:

(**) [tex]$\begin{cases} -\Delta u=\lambda u &\text{, in } D(l) \\ u=0 &\text{, on } \partial D(l)\end{cases}$[/tex]

([tex]$D(l)$[/tex] is the open disc centered in the origin with [tex]$|D(l)|=l^2$[/tex]).

***

For the ones interested in this subject.
There is a vast literature on the eigenvalues of the Laplacian. Good readings on various problems concerning the minimization of the eigenvalue of Laplace operator are this survey by Antoine Henrot and this survey by Rafael Benguria and Helmut Linde.

gugo82
@Camillo: There is a [tex]$+$[/tex] sign missing in your [tex]$\lambda_{n,m}(a,b)$[/tex]...

I mean, if you take [tex]$a=b$[/tex] ([tex]$\Omega (a,b)$[/tex] is a square) and [tex]$m=n=1$[/tex] (the first eigenvalue), then your general result yields [tex]$\lambda_{1,1}(a,a)=0$[/tex]; but this is impossible, for problem:

[tex]$\begin{cases} -\Delta u=0 &\text{, in } \Omega (a,a) \\ u=0 &\text{, on } \partial \Omega (a,a) \end{cases}$[/tex]

has only the trivial solution (in fact, there is only one harmonic function in [tex]$\Omega (a,a)$[/tex] which is zero on [tex]$\partial \Omega (a,a)$[/tex], i.e. the null function).

Camillo
1) Tentative solution

The problem is : $- u_(x x) -u_(yy)- lambda u(x,y)=0 $ with boundary conditions :
$u(x,0)=0 $ for $ 0<=x <=a $
$u(x,b) =0 $ for $ 0<=x <= a $
$u(0,y) =0 $ for $ 0<=y<=b $
$u(0,y) =0 $ for $ 0<=y<= b $

Considering the method of variable separation we write the solution in this way $ u(x,y)= X(x)Y(y)$ and the equation becomes

$-X''(x)Y(y) -X(x)Y''(y)= lambda X(x)Y(y) $.

Consequently we get :
$-(X''(x))/(X(x)) -(Y''(y))/(Y(y)) = lambda $

I put $ mu =-(X''(x))/(X(x)) =lambda +(Y''(y))/(Y(y)) $

Now I call $alpha = mu- lambda $ and we get two eigenvalues problems :

$X''(x) + mu X(x) =0 $ for $ 0< x< a ; X(0)=X(a ) =0 $.
$Y''(y) +alpha Y(y) =0 $ for $ 0
It is known that the relevant eigenfunctions and eigenvalues are :

$X_m(x)=A_m *sin(m*pi*x/a); mu_m=m^2 pi^2/a^2 , m=1,2,... $

$Y_n(y)= B_n sin( n*pi*y/b) ; alpha_n= m^2*pi^2/b^2 ; n= 1,2 ... $




Since $ lambda = mu-alpha $ the eigenvalues for the problem are :

$lambda_(m,n) = pi^2(m^2/a^2 -n^2/b^2) ; m,n = 1.2...$

and the corresponding eigenfunctions are $u_(m,n)= C _(m.n ) sin( m*pi*x/a)*sin( n*pi*y/b) m.n=1,2... $
The solution is $u(x,y) = sum _(m,n=1)^(oo) C_(m.n)sin( m*pi*x/a)*sin(n*pi*y/b) $ which is zero on the borders of the rectangle .

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.