A nice counterexample in Convex Analysis
Here's a nice and interesting counterexample for all analysts and geometricians.
*** Prerequisites ***
***
Problem:
The previous compactness theorem fails in infinite dimensional vector spaces.
Find a counterexample.
In order to answer to the Problem, it could be useful to solve the following:
Exercise:
Consider the normed vector space [tex]$\ell^2:=\{ x=(x_n):\ \sum_{n=1}^{+\infty} |x_n|^2 <+\infty\}$[/tex] equipped with the standard norm, i.e. [tex]$x=(x_n) \mapsto ||x||_2:=\left\{ \sum_{n=1}^{+\infty} |x_n|^2\right\}^{1/2}$[/tex]; this space is the prototype of all separable Hilbert spaces, hence [tex]$\ell^2$[/tex] is complete w.r.t. the norm [tex]$||\cdot ||_2$[/tex].
Let for all [tex]$m\in \mathbb{N}$[/tex]:
[tex]$e^m:=(\delta_n^m),\quad \text{with } \delta_n^m:=\begin{cases} 1&\text{, if } n=m \\ 0&\text{, otherwise} \end{cases}$[/tex];
and [tex]$o$[/tex] be the null sequence, i.e. [tex]$o:=(0,0,l\dots ,0,\ldots )$[/tex].
1. Prove that, for each sequence [tex]$a=(a_n) \in c_0$[/tex]*, the set:
[tex]$K(a):=\{ o\} \cup \{ a_m\ e^m\}_{m\in \mathbb{N}} =\{o, a_1\ e^1,\ a_2\ e^2,\ldots ,a_m\ e^m,\ldots \}$[/tex]
is compact in [tex]$\ell^2$[/tex] and that [tex]$\text{conv} K(a) \subseteq c_{00}$[/tex]**.
2. For all [tex]$m\in \mathbb{N}$[/tex] put:
[tex]$x^m:=\sum_{n=1}^{m} \frac{2^{-n}}{\sum_{j=1}^{m} 2^{-j}}\ a_n\ e^n$[/tex]
[tex]$=\left( \frac{2^{-1}}{\sum_{j=1}^{m} 2^{-j}}\ a_1, \frac{2^{-2}}{\sum_{j=1}^{m} 2^{-j}}\ a_2,\ldots ,\frac{2^{-m}}{\sum_{j=1}^{m} 2^{-j}}\ a_m, 0,\ldots ,0,\ldots \right)$[/tex]
and show that [tex]$x^m \in \text{conv} K(a)$[/tex].
3. Show that [tex]$(x^m)$[/tex] converges in [tex]$\ell^2$[/tex] and evaluate its limit.
4. Prove that [tex]$x:=\lim_m x^m \notin c_{00}$[/tex], hence [tex]$x\notin \text{conv} K(a)$[/tex].
5. Is [tex]$\text{conv} K(a)$[/tex] compact in [tex]$\ell^2$[/tex]?
__________
* Here [tex]$c_0:=\{ a=(a_n):\ a_n\to 0\}$[/tex].
** Remember that [tex]$c_{00}:=\{ b=(b_n):\ \exists \nu \in \mathbb{N} \text{ s.t. } \forall n\geq \nu ,\ b_n=0 \}$[/tex].
*** Prerequisites ***
***
Problem:
The previous compactness theorem fails in infinite dimensional vector spaces.
Find a counterexample.
In order to answer to the Problem, it could be useful to solve the following:
Exercise:
Consider the normed vector space [tex]$\ell^2:=\{ x=(x_n):\ \sum_{n=1}^{+\infty} |x_n|^2 <+\infty\}$[/tex] equipped with the standard norm, i.e. [tex]$x=(x_n) \mapsto ||x||_2:=\left\{ \sum_{n=1}^{+\infty} |x_n|^2\right\}^{1/2}$[/tex]; this space is the prototype of all separable Hilbert spaces, hence [tex]$\ell^2$[/tex] is complete w.r.t. the norm [tex]$||\cdot ||_2$[/tex].
Let for all [tex]$m\in \mathbb{N}$[/tex]:
[tex]$e^m:=(\delta_n^m),\quad \text{with } \delta_n^m:=\begin{cases} 1&\text{, if } n=m \\ 0&\text{, otherwise} \end{cases}$[/tex];
and [tex]$o$[/tex] be the null sequence, i.e. [tex]$o:=(0,0,l\dots ,0,\ldots )$[/tex].
1. Prove that, for each sequence [tex]$a=(a_n) \in c_0$[/tex]*, the set:
[tex]$K(a):=\{ o\} \cup \{ a_m\ e^m\}_{m\in \mathbb{N}} =\{o, a_1\ e^1,\ a_2\ e^2,\ldots ,a_m\ e^m,\ldots \}$[/tex]
is compact in [tex]$\ell^2$[/tex] and that [tex]$\text{conv} K(a) \subseteq c_{00}$[/tex]**.
2. For all [tex]$m\in \mathbb{N}$[/tex] put:
[tex]$x^m:=\sum_{n=1}^{m} \frac{2^{-n}}{\sum_{j=1}^{m} 2^{-j}}\ a_n\ e^n$[/tex]
[tex]$=\left( \frac{2^{-1}}{\sum_{j=1}^{m} 2^{-j}}\ a_1, \frac{2^{-2}}{\sum_{j=1}^{m} 2^{-j}}\ a_2,\ldots ,\frac{2^{-m}}{\sum_{j=1}^{m} 2^{-j}}\ a_m, 0,\ldots ,0,\ldots \right)$[/tex]
and show that [tex]$x^m \in \text{conv} K(a)$[/tex].
3. Show that [tex]$(x^m)$[/tex] converges in [tex]$\ell^2$[/tex] and evaluate its limit.
4. Prove that [tex]$x:=\lim_m x^m \notin c_{00}$[/tex], hence [tex]$x\notin \text{conv} K(a)$[/tex].
5. Is [tex]$\text{conv} K(a)$[/tex] compact in [tex]$\ell^2$[/tex]?
__________
* Here [tex]$c_0:=\{ a=(a_n):\ a_n\to 0\}$[/tex].
** Remember that [tex]$c_{00}:=\{ b=(b_n):\ \exists \nu \in \mathbb{N} \text{ s.t. } \forall n\geq \nu ,\ b_n=0 \}$[/tex].
Risposte
"dissonance":Trivial, you say?
[quote="gugo82"]Carathéodory's theorem is almost trivial...

Convexity is your cup of tea, isn't it?


Convexity isn't exactly my "daily bread" (:-D)... But while I was writing my last post, I remembered a proof of the Carathéodory's theorem I read some time ago (perhaps when I was writing my degree thesis) and, well, it is just linear algebra...
"gugo82":Trivial, you say?
Carathéodory's theorem is almost trivial...

Convexity is your cup of tea, isn't it?


As far as I know, the compactness theorem for convex hull is a consequence of both a theorem of Carathéodory (which is a result of combinatorial type, see below) and the topological Weierstrass theorem (i.e. the image of a compact space under a continuous function is a compact space).
Carathéodory's theorem reads as follows:
A proof of the compactness theorem is the following:
Proof: If the compact [tex]$K$[/tex] is empty, then [tex]$\text{conv} K=\emptyset$[/tex] hence [tex]$\text{conv} K$[/tex] is compact.
Otherwise, let [tex]$K\neq \emptyset$[/tex] be compact and let [tex]$\Delta^N$[/tex] be the standard [tex]$N$[/tex]-simpex in [tex]$\mathbb{R}^{N+1}$[/tex], i.e.:
[tex]$\Delta^N :=\{ \lambda=(\lambda_1,\ldots ,\lambda_{N+1})\in \mathbb{R}^{N+1} :\ \lambda_n\geq 0 \text{ e } \sum_{n=1}^{N+1} \lambda_n=1\}$[/tex].
Define the function [tex]$\Phi : \mathbb{R}^{N+1}\times X^{N+1} \mapsto X$[/tex] by:
[tex]$\Phi (\lambda , x_1,\ldots ,x_{N+1}) := \sum_{n=1}^{N+1} \lambda_n\ x_n$[/tex];
[tex]$\Phi$[/tex] is continuous in [tex]$\mathbb{R}^{N+1}\times X^{N+1}$[/tex] (that's a trivial exercise), hence its restriction [tex]$\varphi :=\Phi \Big|_{\Delta^N \times K^{N+1}}$[/tex] is continuous as well.
By Carathéodory's theorem, we have [tex]$\varphi (\Delta^N\times K^{N+1}) =\text{conv} K$[/tex]; but [tex]$\Delta^N \times K^{N+1}$[/tex] is compact (for it is a product of compact sets), therefore [tex]$\text{conv} K$[/tex] is compact by the topological Weierstrass theorem. [tex]$\square$[/tex]
Carathéodory's theorem is almost trivial and can be found in the most textbooks on convexity; for example, Rockafellar, Convex Analysis, or Webster, Convexity.
Neverthless, if you want a proof, I can write it down here; it's rather short...
Carathéodory's theorem reads as follows:
Let [tex]$(X, ||\cdot ||)$[/tex] be a normed vector space of finite dimension [tex]$N$[/tex], [tex]$Y\subseteq X$[/tex] non empty and [tex]$x\in X$[/tex].
Then [tex]$x\in \text{conv} Y$[/tex] iff [tex]$x$[/tex] can be written as a convex combination of [tex]$N+1$[/tex] or fewer points of [tex]$Y$[/tex].
A proof of the compactness theorem is the following:
Proof: If the compact [tex]$K$[/tex] is empty, then [tex]$\text{conv} K=\emptyset$[/tex] hence [tex]$\text{conv} K$[/tex] is compact.
Otherwise, let [tex]$K\neq \emptyset$[/tex] be compact and let [tex]$\Delta^N$[/tex] be the standard [tex]$N$[/tex]-simpex in [tex]$\mathbb{R}^{N+1}$[/tex], i.e.:
[tex]$\Delta^N :=\{ \lambda=(\lambda_1,\ldots ,\lambda_{N+1})\in \mathbb{R}^{N+1} :\ \lambda_n\geq 0 \text{ e } \sum_{n=1}^{N+1} \lambda_n=1\}$[/tex].
Define the function [tex]$\Phi : \mathbb{R}^{N+1}\times X^{N+1} \mapsto X$[/tex] by:
[tex]$\Phi (\lambda , x_1,\ldots ,x_{N+1}) := \sum_{n=1}^{N+1} \lambda_n\ x_n$[/tex];
[tex]$\Phi$[/tex] is continuous in [tex]$\mathbb{R}^{N+1}\times X^{N+1}$[/tex] (that's a trivial exercise), hence its restriction [tex]$\varphi :=\Phi \Big|_{\Delta^N \times K^{N+1}}$[/tex] is continuous as well.
By Carathéodory's theorem, we have [tex]$\varphi (\Delta^N\times K^{N+1}) =\text{conv} K$[/tex]; but [tex]$\Delta^N \times K^{N+1}$[/tex] is compact (for it is a product of compact sets), therefore [tex]$\text{conv} K$[/tex] is compact by the topological Weierstrass theorem. [tex]$\square$[/tex]
Carathéodory's theorem is almost trivial and can be found in the most textbooks on convexity; for example, Rockafellar, Convex Analysis, or Webster, Convexity.
Neverthless, if you want a proof, I can write it down here; it's rather short...
Thank you! 
I'd like to ask one more question. How difficult it is to prove
I must admit I have no clue. Could it be a consequence of the Heine-Borel property of $X$?

I'd like to ask one more question. How difficult it is to prove
Let [tex]$(X,||\cdot ||)$[/tex] be a normed vector space of finite dimension and [tex]$K\subseteq X$[/tex].
If [tex]$K$[/tex] is compact, then [tex]$\text{conv} K$[/tex] is compact.
I must admit I have no clue. Could it be a consequence of the Heine-Borel property of $X$?
OK!
Good solution and good English as well.

Good solution and good English as well.
Very nice indeed! I'll try my hand at the proofs.
Let [tex]a, K(a)[/tex] as in the preceding post. We rule out the case [tex]a \in c_{00}[/tex], that is we make sure [tex]a_n[/tex] is not eventually zero. This would make [tex]K(a)[/tex] into a finite set, trivializing everything.
First of all we prove that [tex]K(a)[/tex] is compact: choose a sequence [tex](k^m)[/tex] in [tex]K(a)[/tex]. If [tex](k^m)[/tex] contains only a finite number of terms then it contains a constant, hence convergent, subsequence; if not, we can find a strictly increasing sequence [tex](n_h)[/tex] of naturals s.t. [tex]a_{n_h}e^{n_h}[/tex] is a subsequence of [tex](k^m)[/tex] which we call [tex]k^h[/tex] with abuse of notations. Since [tex]\lVert k^h \rVert_2= \lvert a_{n_h} \rvert^2[/tex], this subsequence of [tex](k^m)[/tex] converges to [tex]o[/tex] which is an element of [tex]K(a)[/tex]. Hence the latter is compact.
Next we show that [tex]\mathrm{conv}K(a) \subset c_{00}[/tex]: let [tex]k_1=a_{m_1}e^{m_1},\ k_2=a_{m_2}e^{m_2}[/tex] and [tex]\lambda \in[0, 1][/tex]; clearly every term of [tex](1-\lambda)k_1+\lambda k_2[/tex] of index greater than [tex]\mathrm{max}(m_1, m_2)[/tex] is zero and so [tex](1-\lambda)k_1+\lambda k_2 \in c_{00}[/tex].
Now we call [tex]$x^m=\sum_{n=1}^{m} \frac{2^{-n}}{\sum_{j=1}^{m} 2^{-j}}\ a_n\ e^n$[/tex].
Being a linear combination of [tex]a_1e^1, \ldots, a_me^m \in K(a)[/tex] whose coefficients add up to [tex]1[/tex], [tex]x^m \in \mathrm{conv}K(a)[/tex]. Call [tex]\tilde{a}=(2^{-1}a_1, 2^{-2}a_2, \ldots )=(2^{-n} a_n e^n )[/tex]. This sequence belongs to [tex]\ell^2[/tex] because of [tex]\tilde{a}_n \le \frac{a_n}{2^n}[/tex] and the fact that [tex]a_n[/tex] is bounded.
We claim that [tex]\lVert x^m-\tilde{a} \rVert_2 \to 0[/tex].
To prove this, let [tex]$\alpha_m=(\frac{1}{\sum_{j=1}^m2^{-j}}-1)$[/tex]. Then
[tex]\lVert x^m - \tilde{a} \rVert_2^2= \alpha_m^2 \Bigl [(2^{-1}a_1)^2+ \ldots + (2^{-m}a_m)^2 \Bigr ]+\Bigl [ (2^{-(m+1)}a_{m+1})^2 + (2^{-(m+2)}a_{m+2})^2 +... \Bigr ]=\alpha_m^2S_m + R_m[/tex]
Note that [tex]\alpha_m \to 0[/tex] (obviously); [tex]S_m[/tex] is bounded by [tex]\lVert \tilde a \rVert_2^2[/tex]; and [tex]R_m\to 0[/tex] being a remainder of the convergent series [tex]$\sum_{n=0}^\infty \tilde{a}_n^2[/tex]. We conclude that [tex]\lVert x^m - \tilde{a} \rVert_2^2 \to 0[/tex].
Last, we point out that [tex]\tilde{a} \notin c_{00}[/tex] (that's why we ruled out [tex]a\in c_{00}[/tex]). This implies that [tex]\mathrm{conv}K(a)[/tex] is not closed in [tex]\ell^2[/tex] hence not compact, since [tex]\ell^2[/tex] is Hausdorff.
Let [tex]a, K(a)[/tex] as in the preceding post. We rule out the case [tex]a \in c_{00}[/tex], that is we make sure [tex]a_n[/tex] is not eventually zero. This would make [tex]K(a)[/tex] into a finite set, trivializing everything.
First of all we prove that [tex]K(a)[/tex] is compact: choose a sequence [tex](k^m)[/tex] in [tex]K(a)[/tex]. If [tex](k^m)[/tex] contains only a finite number of terms then it contains a constant, hence convergent, subsequence; if not, we can find a strictly increasing sequence [tex](n_h)[/tex] of naturals s.t. [tex]a_{n_h}e^{n_h}[/tex] is a subsequence of [tex](k^m)[/tex] which we call [tex]k^h[/tex] with abuse of notations. Since [tex]\lVert k^h \rVert_2= \lvert a_{n_h} \rvert^2[/tex], this subsequence of [tex](k^m)[/tex] converges to [tex]o[/tex] which is an element of [tex]K(a)[/tex]. Hence the latter is compact.
Next we show that [tex]\mathrm{conv}K(a) \subset c_{00}[/tex]: let [tex]k_1=a_{m_1}e^{m_1},\ k_2=a_{m_2}e^{m_2}[/tex] and [tex]\lambda \in[0, 1][/tex]; clearly every term of [tex](1-\lambda)k_1+\lambda k_2[/tex] of index greater than [tex]\mathrm{max}(m_1, m_2)[/tex] is zero and so [tex](1-\lambda)k_1+\lambda k_2 \in c_{00}[/tex].
Now we call [tex]$x^m=\sum_{n=1}^{m} \frac{2^{-n}}{\sum_{j=1}^{m} 2^{-j}}\ a_n\ e^n$[/tex].
Being a linear combination of [tex]a_1e^1, \ldots, a_me^m \in K(a)[/tex] whose coefficients add up to [tex]1[/tex], [tex]x^m \in \mathrm{conv}K(a)[/tex]. Call [tex]\tilde{a}=(2^{-1}a_1, 2^{-2}a_2, \ldots )=(2^{-n} a_n e^n )[/tex]. This sequence belongs to [tex]\ell^2[/tex] because of [tex]\tilde{a}_n \le \frac{a_n}{2^n}[/tex] and the fact that [tex]a_n[/tex] is bounded.
We claim that [tex]\lVert x^m-\tilde{a} \rVert_2 \to 0[/tex].
To prove this, let [tex]$\alpha_m=(\frac{1}{\sum_{j=1}^m2^{-j}}-1)$[/tex]. Then
[tex]\lVert x^m - \tilde{a} \rVert_2^2= \alpha_m^2 \Bigl [(2^{-1}a_1)^2+ \ldots + (2^{-m}a_m)^2 \Bigr ]+\Bigl [ (2^{-(m+1)}a_{m+1})^2 + (2^{-(m+2)}a_{m+2})^2 +... \Bigr ]=\alpha_m^2S_m + R_m[/tex]
Note that [tex]\alpha_m \to 0[/tex] (obviously); [tex]S_m[/tex] is bounded by [tex]\lVert \tilde a \rVert_2^2[/tex]; and [tex]R_m\to 0[/tex] being a remainder of the convergent series [tex]$\sum_{n=0}^\infty \tilde{a}_n^2[/tex]. We conclude that [tex]\lVert x^m - \tilde{a} \rVert_2^2 \to 0[/tex].
Last, we point out that [tex]\tilde{a} \notin c_{00}[/tex] (that's why we ruled out [tex]a\in c_{00}[/tex]). This implies that [tex]\mathrm{conv}K(a)[/tex] is not closed in [tex]\ell^2[/tex] hence not compact, since [tex]\ell^2[/tex] is Hausdorff.