A generalized Hölder inequality
A basic exercise in [tex]$L^p$[/tex] spaces theory.
Hope someone will answer to improve English.
***
Let us recall some basic facts.
***
Exercise:
Let [tex]$(X,\mathfrak{M} ,\mu )$[/tex] be a nontrivial measure space, [tex]$N \in \mathbb{N}$[/tex] a number [tex]$\geq 2$[/tex] and let [tex]$p_1,\ldots ,p_N \in [1,+\infty]$[/tex] s.t. [tex]$\sum_{n=1}^N \frac{1}{p_n} =1$[/tex]***.
Prove that the generalized Hölder inequality:
(gH) [tex]$\left\lVert \prod_{n=1}^N f_n \right\rVert_1 \leq \prod_{n=1}^N \lVert f_n\rVert_{p_n}$[/tex]
holds true for all [tex]$f_1\in L^{p_1} (\mu ), \ldots ,f_n\in L^{p_n} (\mu )$[/tex].
__________
*** If one or more [tex]$p_n$[/tex]s are equal to [tex]$+\infty$[/tex] this relation has to be understood as [tex]\sum_{n=1,\ldots N,\ p_n\neq +\infty} \frac{1}{p_n} =1[/tex].
On the other hand, if one [tex]$p_\nu$[/tex] is equal to [tex]$1$[/tex], then relation [tex]\sum_{n=1}^N \frac{1}{p_n} =1[/tex] forces the other [tex]$p_n$[/tex]s to be equal to [tex]$+\infty$[/tex].
Hope someone will answer to improve English.
***
Let us recall some basic facts.
***
Exercise:
Let [tex]$(X,\mathfrak{M} ,\mu )$[/tex] be a nontrivial measure space, [tex]$N \in \mathbb{N}$[/tex] a number [tex]$\geq 2$[/tex] and let [tex]$p_1,\ldots ,p_N \in [1,+\infty]$[/tex] s.t. [tex]$\sum_{n=1}^N \frac{1}{p_n} =1$[/tex]***.
Prove that the generalized Hölder inequality:
(gH) [tex]$\left\lVert \prod_{n=1}^N f_n \right\rVert_1 \leq \prod_{n=1}^N \lVert f_n\rVert_{p_n}$[/tex]
holds true for all [tex]$f_1\in L^{p_1} (\mu ), \ldots ,f_n\in L^{p_n} (\mu )$[/tex].
__________
*** If one or more [tex]$p_n$[/tex]s are equal to [tex]$+\infty$[/tex] this relation has to be understood as [tex]\sum_{n=1,\ldots N,\ p_n\neq +\infty} \frac{1}{p_n} =1[/tex].
On the other hand, if one [tex]$p_\nu$[/tex] is equal to [tex]$1$[/tex], then relation [tex]\sum_{n=1}^N \frac{1}{p_n} =1[/tex] forces the other [tex]$p_n$[/tex]s to be equal to [tex]$+\infty$[/tex].
Risposte
"gugo82":
Exercise:
Let [tex]$(X,\mathfrak{M} ,\mu )$[/tex] be a nontrivial measure space, [tex]$N \in \mathbb{N}$[/tex] a number [tex]$\geq 2$[/tex] and let [tex]$p_1,\ldots ,p_N \in [1,+\infty]$[/tex] s.t. [tex]$\sum_{n=1}^N \frac{1}{p_n} =1$[/tex]***.
Prove that the generalized Hölder inequality:
(gH) [tex]$\left\lVert \prod_{n=1}^N f_n \right\rVert_1 \leq \prod_{n=1}^N \lVert f_n\rVert_{p_n}$[/tex]
holds true for all [tex]$f_1\in L^{p_1} (\mu ), \ldots ,f_n\in L^{p_n} (\mu )$[/tex].
__________
*** If one or more [tex]$p_n$[/tex]s are equal to [tex]$+\infty$[/tex] this relation has to be understood as [tex]\sum_{n=1,\ldots N,\ p_n\neq +\infty} \frac{1}{p_n} =1[/tex].
On the other hand, if one [tex]$p_\nu$[/tex] is equal to [tex]$1$[/tex], then relation [tex]\sum_{n=1}^N \frac{1}{p_n} =1[/tex] forces the other [tex]$p_n$[/tex]s to be equal to [tex]$+\infty$[/tex].
Throughout we assume [tex]$p_n \in ]1,+\infty[$[/tex] for each [tex]$n$[/tex].
We're going to make induction on [tex]$N$[/tex].
For [tex]$N=2$[/tex], (gH) reduces to the standard Hölder inequality, so we have the basis.
Now we assume (gH) to be true for [tex]$N\geq 3$[/tex] and prove it holds also for [tex]$N+1$[/tex].
Put [tex]$\frac{1}{q} =\sum_{n=1}^N \tfrac{1}{p_n}$[/tex] so that the number [tex]$q$[/tex] is the Hölder conjugate of [tex]$p_{N+1}$[/tex].
Note that:
(*) [tex]$\left\lVert \prod_{n=1}^{N+1} f_n\right\rVert_1 =\int_X \Big\{\prod_{n=1}^N |f_n|\Big\} \cdot |f_{N+1}|\ \text{d} \mu$[/tex]
so it seems a good strategy using the standard Hölder inequality to find an upper bound for the r.h.s.; in order to do this we have to show that [tex]$\prod_{n=1}^N f_n \in L^q$[/tex]. Ok, let's do it!
For [tex]$n=1,\ldots , N$[/tex] we have:
[tex]$f_n \in L^{p_n} \quad \Rightarrow \quad |f_n|^q \in L^\frac{p_n}{q}$[/tex]
and [tex]$\sum_{n=1}^N\frac{1}{\frac{p_n}{q}} =q\ \sum_{n=1}^N \frac{1}{p_n} =1$[/tex], so we can apply the induction hypothesis to write:
[tex]$\left\lVert \prod_{n=1}^N f_n \right\rVert_q^q =\int_X \prod_{n=1}^N |f_n|^q\ \text{d} \mu$[/tex]
[tex]$\stackrel{\text{{\bf gH}}}{\leq} \prod_{n=1}^N \lVert |f_n|^q\rVert_\frac{p_n}{q}$[/tex]
[tex]$=\prod_{n=1}^N \left\{ \int_X (|f_n|^q)^\frac{p_n}{q}\ \text{d} \mu\right\}^\frac{q}{p_n}$[/tex]
[tex]$=\prod_{n=1}^N \left\{ \int_X |f_n|^{p_n} \ \text{d} \mu \right\}^\frac{q}{p_n}$[/tex]
[tex]$=\prod_{n=1}^N \lVert f_n\rVert_{p_n}^q <+\infty$[/tex]
hence [tex]$\prod_{n=1}^N f_n \in L^q$[/tex] and:
(**) [tex]$\left\lVert \prod_{n=1}^N f_n \right\rVert_q \leq \prod_{n=1}^N \lVert f_n\rVert_{p_n}$[/tex].
Hence the standard Hölder inequality applies to (*) and (**) implies:
[tex]$\left\lVert \prod_{n=1}^{N+1} f_n\right\rVert_1 \stackrel{\text{{\bf H}}}{\leq} \left\lVert \prod_{n=1}^N f_n\right\rVert_q\ \lVert f_{N+1}\rVert_{p_{N+1}} \leq \prod_{n=1}^{N+1} \lVert f_n\rVert_{p_n}$[/tex],
which is the inductive step.
Finally, Mathematical Induction Principle does its magic and the theorem follows.

[size=67]Post written while listening to this tune. If there are mistakes, blame them on Slowhand!

Ok fu^2!
Your solution covers all the "easy" cases.
For the general case (when [tex]$p_n\in ]1,+\infty[$[/tex] for [tex]$n=1,\ldots ,N$[/tex]), may I suggest to put [tex]\frac{1}{q} :=\sum_{n=2}^N \frac{1}{p_n}[/tex] and to investigate the relationship between [tex]$p_1$[/tex] and [tex]$q$[/tex]?
Your solution covers all the "easy" cases.
For the general case (when [tex]$p_n\in ]1,+\infty[$[/tex] for [tex]$n=1,\ldots ,N$[/tex]), may I suggest to put [tex]\frac{1}{q} :=\sum_{n=2}^N \frac{1}{p_n}[/tex] and to investigate the relationship between [tex]$p_1$[/tex] and [tex]$q$[/tex]?
if $N=2$ the problem is trivial (i.e. we find the classic Holder inequality)
We go on using the induction method, therefore we suppose true the sentence for $N-1$.
If $f=\prod_{j=1}^{N}f_j$ and exist $j$ s.t. $p_j=+oo$, the sentence follows.
In fact, we can suppose that $j=1$, and we have $\sum_{j=2}^{N}=1$ so $\int|g|=\int|f_2...f_{N}|<=||f_2||_{p_2}...||f_{N}||_{p_N}$ by induction hipothesis.
Then, using the classic Holder inequality since $g=f_2...f_{N}\in L^1(\mu)$ and $f=f_1g$, we obtain that $||f||_1<=||f_1||_{oo}...||f_{N}||_{p_N}$.
So we can suppose that $p_j\ne +oo$ and $p_j\ne 1$ for each $j=1,...,N$.
but now i don't understand how i can solve this case (this is the interesting case
).
Maybe this night i'll came back to this post...
We go on using the induction method, therefore we suppose true the sentence for $N-1$.
If $f=\prod_{j=1}^{N}f_j$ and exist $j$ s.t. $p_j=+oo$, the sentence follows.
In fact, we can suppose that $j=1$, and we have $\sum_{j=2}^{N}=1$ so $\int|g|=\int|f_2...f_{N}|<=||f_2||_{p_2}...||f_{N}||_{p_N}$ by induction hipothesis.
Then, using the classic Holder inequality since $g=f_2...f_{N}\in L^1(\mu)$ and $f=f_1g$, we obtain that $||f||_1<=||f_1||_{oo}...||f_{N}||_{p_N}$.
So we can suppose that $p_j\ne +oo$ and $p_j\ne 1$ for each $j=1,...,N$.
but now i don't understand how i can solve this case (this is the interesting case

Maybe this night i'll came back to this post...
