A beautifoul thing!

fu^2
proof that $sum_(k=0)^(n-1)[alpha+k/n]=[nalpha]$ where $alphainRR^+$, $ninn$ and $alpha,n>0$.

NB $[gamma]$ is the max integer minor of $gamma$, for example $[2.89]=2$.


Risposte
mathefan
beautifoul?!
sorry.. what is this??

BEAUTIFUL is right.

TomSawyer1

fu^2
"luca.barletta":
[quote="fu^2"] $ninnn$


I suppose $n in NN$[/quote]

yes, of course!
:wink: :oops:

_luca.barletta
"fu^2":
$ninnn$


I suppose $n in NN$

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.