Distribuzione congiuntà di probabilità

Giova411
Varibili casuali congiunte X e Y hanno funzione di densità congiunta pari a:

$f(x,y)={((2x+y)/210 " 2
Trovo le marginali:
$F_1(x) ={(0 " per x<2"), ((2x^2+5x -18)/84 " 2<=x<6"),(1 " x>=6"):}$
$F_2(y) ={(0 " per y<0"), ((y^2+16y)/105" 0<=x<5"),(1 " x>=5"):}$

La funzione di distribuzione congiunta viene:

$F(x,y) = int_(2)^(6) (int_(0)^(y) ((2u+v) /210)*dv)du) = (y^2+16y)/105$



Quando siamo nel rettangolo come trovo la distribuzione congiunta? (rettangolo 2

Risposte
_Tipper
La funzione di sdistribuzione congiunta, a partire dalla densità di probabilità congiunta, si trova calcolando

$F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(\xi, \eta) d \xi d \eta$

Nel rettangolo, integri $\xi$ fra $2$ e $x$, integri $\eta$ fra $0$ e $y$.

Giova411
Grandissimo! Capito.

Dovrebbe venire (lo scrivo per chi vuol fare l'esercizio):

$F(x,y)=(2x^2y+xy^2-8y-2y^2)/420$


Grazie Tipperino mio! :wink:

_Tipper
Ma figurati... :-D

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.