Appuntamento a Parigi (probabilità)

Giova411
Due amici si danno appuntamento sotto la Tour Eiffel, il giorno di Natale, dalle 12 alle 13. Ognuno dei due arriva in un momento scelto a caso, uniformemente, nell'ora indicata;
determinare:
a) la prob che nessuno sia lì alle 12:30;
b) la prob che si siano già incontrati alle 12:20;
c) la distribuzione del tempo di attesa del primo ad arrivare, e la sua media.



:roll: :oops: :shock: :axe: ](*,) + tutte le altre Emoticons che indicherebbero che non so che fà...

Risposte
codino75
de finetti (in realta' il suo allievo scozzafava) mi ha aperto gli occhi sulla probabilita' soggettiva, cioe' sul fatto che la probabilita' non e' , a rigore, una proprieta' degli eventi fisici in se', ma misura il grado di "mancanza di informazione" che il soggetto , che da' una misura della probabilita' dell'evento, possiede.
ma forse non ti e' utile nei tuoi problemi concreti.

codino75
dicevo w de finetti perche' ti vedo frustrato da queste questioni di esercizi , mentre a me e' rivenuto in mente la "rivelazione" della probabilita' soggettiva.
non stavo consigliandoti un testo di esercizi.
:lol: :lol: :lol: :lol: :lol: :lol: :lol: :lol: :lol: :lol:

Giova411
Ora ho capito cosa intendevi.. Cma mi auto-frusto perché prendo in mano problemi fuori dalla mia portata... Questi il + delle volte non riesco ad interpretarli e chiedo aiuto qui...
La strada verso l'esame è ancora lunga! :(

Piera4
Credo intenda questo:
c) X = orario di arrivo di un ragazzo
Y = orario di arrivo dell'altro ragazzo
devi trovare la distribuzione di min(X, Y).
Ecco come lo farei.
X e Y hanno distribuzioni uniformi indipendenti in (0,1) ($P(X<=a)=P(Y<=a)=a$), visto che devono arrivare nell'arco di un'ora.
Troviamo la distribuzione del minimo, sicuramente da qualche parte nel tuo libro c'è un procedimento simile a questo:
$P(min(X,Y)<=a)=1-P(min(X,Y)>a)=1-P(X>a,Y>a)=$ per l'indipendenza di X e Y
$=1-P(X>a)P(Y>a)=1-(1-P(x<=a))(1-P(Y<=a))=1-(1-a)^2$ per $0 Derivando si ottiene la densità $f(a)=2(1-a)$.
La media è
$int_0^1a*f(a)da=int_0^1a*2(1-a)da$.

_luca.barletta
"Piera":
Credo intenda questo:
c) X = tempo di arrivo del primo ragazzo
Y = tempo di arrivo del secondo ragazzo
devi trovare la distribuzione di min(X, Y).


Non piuttosto
X = orario del primo ragazzo ad arrivare
Y = orario del secondo ragazzo ad arrivare

trovare $f_Z$ con $Z=Y-X$ ?

Piera4
Ho fatto casino, modifico.
X = orario di arrivo di un ragazzo
Y = orario di arrivo dell'altro ragazzo
Uno dei due ragazzi (il primo) arriverà in un orario $<=a$, quando $min(X,Y)<=a$.
Mi sembra che il testo chieda la probabilità che il primo ragazzo arrivi in un certo orario, non il tempo intercoccorrente tra l'arrivo del primo e del secondo. Ma forse interpreto male il testo.

Giova411
Raga vi ringrazio infinitamente per il vostro sostegno!
Ho capito un pochetto. Ciò che ancora non capisco è il perché bisogna trovare la distribuzione di min. (Poi capito questo capisco anche i passaggi per arrivare alla media)

Ora non mandatemi a quel paese...
Un'altra cosa: nei punti a e b le vedevo come var discrete. Ok
Nel punto c devo considerarle 2 variabili continue?

(..sarà che ho un casotto in testa...)

_luca.barletta
"Giova411":

Un'altra cosa: nei punti a e b le vedevo come var discrete. Ok
Nel punto c devo considerarle 2 variabili continue?


Non le abbiamo mai considerate discrete. Avevamo in un certo modo considerato le cumulate.

Giova411
"luca.barletta":

Non le abbiamo mai considerate discrete. Avevamo in un certo modo considerato le cumulate.


:-D belle figure faccio!

Ancora non so cosa sono... Darò un'occhiata anche a loro...

Piera4
Visto che potrei aver interpretato o anche risolto male l'esecizio, è meglio se lo chiedi al tuo professore.
Provo a spiegarti perchè uso il minimo tra X e Y.
Il primo arriva in un certo orario se e solo se il più piccolo, cioè il minimo tra X e Y arriva in quello stesso orario.

Piera4
@Giova411
Prima ti conviene studiare i concetti base e dopo fare gli esercizi. Non viceversa!
Ciao

Giova411
"Piera":
Visto che potrei aver interpretato o anche risolto male l'esecizio, è meglio se lo chiedi al tuo professore.

E chi lo conosce?! L'avrò visto una volta e senza sapere chi fosse... Non frequento purtroppo e dicono che è bravo. Ho le schede che mette in rete. I suoi esercizietti che mi fanno uscire di testa come quello dei pesci del lago. Ma molti altri ancora! Vedrete di cosa è capace di inventarsi.

Cmq ora cercherò di ricopiare tutto per bene su un foglio per vederci meglio. :smt066

Grazie a tutti. :smt038

Giova411
"Piera":
@Giova411
Prima ti conviene studiare i concetti base e dopo fare gli esercizi. Non viceversa!
Ciao


Lo so ma spesso non lo faccio di proposito...
Sugli appunti del prof non sono nominate queste cumulate (forse le chiama diversamente? Boh)
Poi però negli esercizi le chiede... E meno male che ci siete voi!

Piera4
Ti posso chiedere come mai non hai frequentato il corso?

codino75
"Piera":
Ti posso chiedere come mai non hai frequentato il corso?


perche' maradona ha altro da fare... :roll: :roll: :roll: :roll: :roll:

Piera4
Me la sono meritata...
E' che esami di questo tipo difficilmente si passano da autodidatta e affidarsi a un forum, per come la vedo io, serve a poco.

Giova411
Diego si, ne ha tante per la testa...

Non frequento perché sono a 70 km fuori sede. Poi in quel periodo lavoravo. Il corso era in autunno.

Senza frequentare ho dato 24 esami... Ora me ne mancono 2.
Spero di riuscire nello sforzo finale (faccio Informatica a MM FF NN)

Ho libri, appunti e testi d'esame. Ma l'asso nella manica è questo Forum.

Dai che ce la fo! Pié non tirarmi i piedi! :smt109

Piera4
Certo che ce la fai!
Volere è potere!
Le mie erano solo delle considerazioni pessimistiche riferite in generale.
Spero che tu non te la sia presa.

Avete visto il primo tempo dell'Italia?
Gran bella partita, vero?

codino75
"Piera":
Certo che ce la fai!
Volere è potere!
Le mie erano solo delle considerazioni pessimistiche riferite in generale.
Spero che tu non te la sia presa.

Avete visto il primo tempo dell'Italia?
Gran bella partita, vero?


l'ultima affermazione (anzi domanda) e' ironica?

Piera4
Certo, è una battuta.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.