Equazione cono con vertice non sull'asse delle z
Dalla geometria è noto che l'equazione di un cono avente vertice $(0,0,c)$ sull'asse $z$ si scrive come:
$(z-c)^2 = x^2 + y^2$
Tuttavia, quando si richiede di scrivere l'equazione di un cono avente vertice sull'asse delle x (es. (a,0,0)), è lecito utilizzare la stessa formula invertendo gli assi? Nel senso, è lecito scrivere:
$(x-a)^2 = y^2 + z^2$
Io pensavo di sì, ma non mi trovo con i conti di alcuni integrali tripli.
Grazie per l'attenzione
dm
$(z-c)^2 = x^2 + y^2$
Tuttavia, quando si richiede di scrivere l'equazione di un cono avente vertice sull'asse delle x (es. (a,0,0)), è lecito utilizzare la stessa formula invertendo gli assi? Nel senso, è lecito scrivere:
$(x-a)^2 = y^2 + z^2$
Io pensavo di sì, ma non mi trovo con i conti di alcuni integrali tripli.
Grazie per l'attenzione

dm
Risposte
Qualche moderatore potrebbe spostare questo post nella sezione Analisi Matematica? Ieri ero indeciso, ma forse quella è la sezione più adatta per questo tipo di richieste.
Grazie per l'attenzione.
Grazie per l'attenzione.