Dubbio Spazio vettoriale

maxpix
Buon pomeriggio a tutti ho un dubbio se un insieme è o meno un sottospazio vettoriale.

l'esercizio in questione è il seguente

Dati gli insiemi
$U := {(x; y; z) in R^3| x - y = 2z = 1}$
$V :={(x; y; z) in R^3| x + 2y + 3z = 0}$
$W :={(x; y; z) in R^3 | xy = z = 0}$
quali tra di essi sono sottospazi vettoriali di R3?

Allora, U non è un sottospazio. In quanto $0 !in U$
V è un sottospazio. Soddisfa le tre condizioni

Il dubbio è su W.
Perchè su W trovo che $0 in W$ ma per quanto riguarda la somma mi riduco ad avere il seguente sistema:

${ ( x_1y_1+x_1y_2+x_2y_1 + x_2y_2 = 0 ),( z_1+z_2=0 ):}$

dove le quantità $x_1y_1, x_2y_2$ vanno a zero per definizione del sottospazio.
Stesso discorso per la seconda equazione del sistema che va a 0 per definizione.
Il mio dubbio è sulle quantità "miste" $x_1y_2, x_2y_1$. Quelle non vanno a 0, no?

E' corretto?

Grazie

Risposte
anto_zoolander
cosa sono quei prodotti nel sistema?

essendo $z=0$ deve essere almeno $W={(x,y,0) inRR^3:xy=0}$

i vettori $(1,0,0)$ e $(0,1,0)$ stanno in $W$ ma la loro somma $(1,1,0)$ no.

maxpix
i prodotti nel sistema sono dovuti alla condizione della chiusura della somma che deve soddisfare la condizione xy=z.
xy è il prodotto

anto_zoolander
ma $xy=z$ e $z=0$ quindi $xy=0$

maxpix
si infatti x1y1 poi vanno a 0. il mio dubbio era se anche x1y2 andasse a zero visto che hanno apici diversi

anto_zoolander
Ma non tu devo trovare un controesempio se pensi che non sia un sottospazio, non edificare che lo sia.

Pensi che che non sia chiuso per la somma? Prendi due vettori scelti opportunamente, che stanno nello spazio, e mostri che la loro somma non ci sta.

Penso che non sia chiuso per il prodotto per scalare? Scegli opportunamente uno scalare ed un vettore e mostri che il prodotto per scalare non ci sta.

Ecc..

Io un esempio te l’ho mostrato...

NB: quando usi pedici, specifica cosa riguardano. Tipo $(x_1,x_2,x_3)$ e $(y_1,y_2,y_3)$ oppure in altro modo.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.