Applicazione bilineare prodotto scalare

reanto91
Sia g:$ $R^3$ xx $R^3$ $ $->$ R l’applicazione bilineare avente come matrice associata rispetto alla base canonica di $R^3$ la matrice

G=$((1,0,1),(0,1,0),(1,0,2))$

a)verificare che g definisce un prodotto scalare su $R^3$
b)determinare g(x,x’) per ogni x=(x,y,z) e x’=(x’ y’ z’) $in$ $R^3$
c)determinare l’ortogonale U =[(x,y,z)$in$$R^3$ /x+y+z=0] rispetto a g.

Risposte
_prime_number
Da regolamento devi postare i tuoi tentativi, anche per mostrare dove esattamente hai difficoltà.
E' un esercizio piuttosto standard ed elementare, specialmente a) e b)...

Paola

PS Uno strumento utile è anche la funzione di ricerca dentro al forum, sicuramente ci sono esercizi svolti sul prodotto scalare.

reanto91
ci proverò...

reanto91

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.