Problema sui fluidi.
Si consideri un piano inclinato di un angolo $ \phi $ in cui vi è un corpo di marmo di densità $ \rho $ .
Tra corpo e piano inclinato è immesso uno strato d'olio alto $ h $, di cui si conosce la viscosità $ \mu $.
Il corpo di marmo, a forma di parallelepipedo, ha una altezza $ d $.
Bisogna calcolare la velocità costante con cui il corpo scende $ v $.
Allora per l'equilibrio delle forze deve risultare:
$mgsin \phi - Fa= 0$ dove $ Fa $ è la forza d'attrito viscoso.
Ora la forza di attrito viscoso la posso correlare alla sforzo. Ma qui viene il bello che non capisco.
In teoria ho studiato che lo sforzo applicato ad un parallelepipedo di fluido newtoniano(l'olio quindi va bene) segue la legge:
$ \tau =\mu $ $ (del U) / (del y) $ e quindi sapendo che $ del U $ è la $ v $ e che $ del y $ è la mia $ h $ posso ricavarmi lo sforzo $ \tau $. Ora non capisco una cosa: questo sforzo è per definizione la forza F fratto la superficie. Nei miei calcoli quindi, fatti dal prof, ho scritto: $\tau= F / S $ considerando come superficie la superficie del parallelepipedo che è sopra l'olio. Ma non dovrebbe essere la superficie del fluido stesso???
Non capisco perchè viene considerata come superficie la superficie del parallelelipedo, visto che lo sforzo e la forza sono tutte inerenti al fluido e quindi cosa c'entra il parallelepipedo?
Poi è inutile che continuo perchè si tratta solo di continuare l'equazione....il problema è solo questo....
Tra corpo e piano inclinato è immesso uno strato d'olio alto $ h $, di cui si conosce la viscosità $ \mu $.
Il corpo di marmo, a forma di parallelepipedo, ha una altezza $ d $.
Bisogna calcolare la velocità costante con cui il corpo scende $ v $.
Allora per l'equilibrio delle forze deve risultare:
$mgsin \phi - Fa= 0$ dove $ Fa $ è la forza d'attrito viscoso.
Ora la forza di attrito viscoso la posso correlare alla sforzo. Ma qui viene il bello che non capisco.
In teoria ho studiato che lo sforzo applicato ad un parallelepipedo di fluido newtoniano(l'olio quindi va bene) segue la legge:
$ \tau =\mu $ $ (del U) / (del y) $ e quindi sapendo che $ del U $ è la $ v $ e che $ del y $ è la mia $ h $ posso ricavarmi lo sforzo $ \tau $. Ora non capisco una cosa: questo sforzo è per definizione la forza F fratto la superficie. Nei miei calcoli quindi, fatti dal prof, ho scritto: $\tau= F / S $ considerando come superficie la superficie del parallelepipedo che è sopra l'olio. Ma non dovrebbe essere la superficie del fluido stesso???
Non capisco perchè viene considerata come superficie la superficie del parallelelipedo, visto che lo sforzo e la forza sono tutte inerenti al fluido e quindi cosa c'entra il parallelepipedo?
Poi è inutile che continuo perchè si tratta solo di continuare l'equazione....il problema è solo questo....
Risposte
Se hai un blocco parallelepipedo su un terreno e ti chiedessero quanto vale la pressione del blocco sul terreno come la calcoleresti sapendo il peso del blocco?
Per la tensione tangenziale vale la stessa cosa.
Per la tensione tangenziale vale la stessa cosa.