Linearizzazione t = (v/g) sin(a)

90Gianlu90
E' tutto il pomeriggio che provo a linearizzare quest'equazione

$ t = (v/g) sin a $


dove "a" è la variabile... ho provato con l'arcsen, ma capisco come viene il membro di destra...

Risposte
Akuma1
non vorrei sbagliarmi ma non la puoi linearizzare in modo generale. tuttavia se $a$ (infinitesimo) è molto piccolo puoi confondere il seno con l'argomento e quindi diventa $t=(v/g)*a$

90Gianlu90
no, a non è piccolo...

perchè praticamente l'esercizio chiede di graficare i dati in modo da ottenere una relazione lineare e poi ricavare v dalla retta di best fit..

non è che y = t, m=v/g , x=sin a ?? Cioè sarebbe possibile fare cosi?

Faussone
Per ottenere una relazione lineare in $a$ scrivi così:

$(g t/v)=sin a$

Quindi $arcsin (g t/v) = a$

Se riporti in ordinata $arcsin (g t/v)$ e in ascissa $a$ trovi una retta.

A questo punto per trovare $v$ conoscendo il resto entri con l'ascissa $a$ esci col valore di $arcsin (g t /v)$ ne fai il seno e trovi $g t /v$ e da qui ti ricavi $v$.
Vabbè in realtà la retta è a 45° rispetto all'asse $a$ quindi è banale, non so se si intendesse questo....

90Gianlu90
grazie per la linearizzazione :-) il nostro professore per ricavare i valori fa cosi pone l'equazione linearizzata come y = mx +c ... mettiamo per esempio che in questo caso V sia il gradiente.. ce lo fa calcolare tramite la formula e quello è il valore di V.

In questo caso però non si può fare, perchè V non è ne gradiente ne intercetta.. o si può? cioè io ho la tabella con i valori di "t" e di "a".. considerando che conosco anche "g", posso calcolarmi "v" scegliendo una qualsiasi coppia di valori "t,a" giusto?

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.