Energia in un circuito

AlexlovesUSA
Ciao ragazzi, il mio studio va avanti e ogni piccolo dubbio cerco di chiarirlo con voi per essere più sicuro. Questa volta studiando un circuito RC mi è sorto qualche dubbio circa il verso della corrente, del campo elettrico, il valore del potenziale e dell'energia potenziale. Allora
1) Sappiamo per definizione che l'energia potenziale $deltaU$ è il lavoro opposto a quello che fa il campo elettrico quando una carica $q_0$ viene spostata in esso quindi l'energia potenziale elettrica è il lavoro fatto dalla forza esterna per spostare questa carica.

$deltaU$= $ - q_0 int_(a)^(b) Eds $

2) Il potenziale è definito come V= $ U / (q_0) $ quindi la differenza di potenziale è il lavoro fatto dalla forza esterna sulla carica per spostarla da a a b senza variare la sua energia cinetica.

3)Il verso della corrente I è per definizione quello del moto delle cariche positive e quindi opposto a quello del vero moto delle cariche negative quindi la corrent I ha lo stesso verso del campo elettrico E.
4) Il potenziale diminuisce con il verso del campo elettrico. L'energia potenziale di una carica positiva diminuisce nel verso di E mentre quella negativa si muove in verso opposto a E quindi la sua en potenziale aumenta.

In un circuito una batteria avente due poli uno + e uno - provoca una forza elettromotrice $epsilon$ che crea una diff.di.pot. che crea un campo elettrico E.

Il verso del campo elettrico che è lo stesso di V quale è? Partendo dal polo positivo va verso il polo negativo in questo caso l'energia potenziale della carica non dovrebbe diminuire dato che si parla di cariche positive??
Invece se partiamo da un punto iniziale a t=0 prima del polo negativo della batteria la particella che passa dal polo negativo a quello positivo acquista

Risposte
Falco5x
Rispondo all'appello.
:D
"AlexlovesUSA":
2) Il potenziale è definito come V= $ U / (q_0) $ quindi la differenza di potenziale è il lavoro fatto dalla forza esterna sulla carica per spostarla da a a b senza variare la sua energia cinetica.

Perchè senza variare l'energia cinetica? se è un sistema non dissipativo l'energia potenziale si trasforma proprio in energia cinetica: ad esempio quando una carica si trova nel vuoto e nel campo di un'altra carica che la respinge. Se invece siamo in un circuito resistivo allora con ottima approssimazione tutta l'energia potenziale si dissipa e la cinetica resta costante.
"AlexlovesUSA":

In un circuito una batteria avente due poli uno + e uno - provoca una forza elettromotrice $epsilon$ che crea una diff.di.pot. che crea un campo elettrico E.
Il verso del campo elettrico che è lo stesso di V quale è? Partendo dal polo positivo va verso il polo negativo in questo caso l'energia potenziale della carica non dovrebbe diminuire dato che si parla di cariche positive??

Certamente, l'energia potenziale diminuisce perché si trasforma in calore.
"AlexlovesUSA":

Invece se partiamo da un punto iniziale a t=0 prima del polo negativo della batteria la particella che passa dal polo negativo a quello positivo acquista
Non so se ho capito: tu dici che l'ipotetica particella positiva che entra nel polo negativo della batteria riacquista energia potenziale fino a uscire di nuovo dal polo positivo? Sì, è così, come se avesse preso l'ascensore. E l'energia che fa risalire l'ascensore è energia dovuta a trasformazioni di legami chimici. Poi uscendo dal polo positivo prende di nuovo lo scivolo verso il polo negativo e si scalda il fondo dei pantaloni, come un bambino sullo scivolo del parco giochi.

AlexlovesUSA
:D belli questi paragoni che rendono più semplici le cose.

Per quanto riguarda quella cosa dell'energia cinetica nel mio libro è scritto così : La differenza di potenziale è il lavoro che una forza esterna deve compiere per spostare la carica in un campo elettrico senza variarne l'energia cinetica. Ma perchè questa cosa?(non la capisco)

Per il circuito allora avevo ragione io. Cioè dopo che la particella positiva prende l'ascensore quindi acquista energia passando dal potenziale minore (polo negativo) a quello maggiore(polo positivo) durante il giro nel circuito avendo lo stesso verso del campo elettrico si muove in un potenziale decrescente quindi quello che voglio sapere io è Anche se il circuito fosse costituito solo da una batteria e niente più, la particella positiva perderebbe lo stesso energia potenziale durante il percorso dato che si muove dal potenziale + alto(polo positivo) a quello più basso(negativo) ?

Falco5x
"AlexlovesUSA":
Per quanto riguarda quella cosa dell'energia cinetica nel mio libro è scritto così : La differenza di potenziale è il lavoro che una forza esterna deve compiere per spostare la carica in un campo elettrico senza variarne l'energia cinetica. Ma perchè questa cosa?(non la capisco)

Prendiamo l'esempio di una carica positiva nel vuoto. Il potenziale generato nello spazio è $V=Q/(4\pi\epsilon_0r)$. Dunque tra due punti a distanza diversa dalla carica la differenza di potenziale è $\DeltaV=Q/(4\pi\epsilon_0)(1/r_1-1/r_2)$. Ebbene: posta una paricella unitaria ferma nel punto uno e lasciata libera, questa viene spinta ad accelerare dalla forza di repulsione nei confronti di Q. Quando giunge al punto 2 secondo te avrà velocità cinetica? risposta: certo che ce l'avrà, e precisamente $E_k=\DeltaV$, per cui avrà una velocità $v=\sqrt((2\DeltaV)/m)$. Il discorso dell'energia cinetica costante riguarda gli elementi di circuito dissipativi. Cioè una carica positiva in un circuito elettrico resistivo quando esce dal polo positivo ha una certa velocità, e quando entra nel polo negativo ha sempre la stessa velocità. Allora in questo caso l'energia potenziale dove è andata? e perché la particella ha sempre la stessa velocità visto che viene spinta da un campo elettrico? La ragione è contenuta nel fatto che la particella urta continuamente contro il reticolo cristallino del conduttore e gli cede energia sotto forma di calore; poi riparte per urtare di nuovo dopo poco; dunque mediamente la sua velocità (statisticamente) è sempre la stessa in qualunque punto del circuito.
"AlexlovesUSA":
quello che voglio sapere io è Anche se il circuito fosse costituito solo da una batteria e niente più, la particella positiva perderebbe lo stesso energia potenziale durante il percorso dato che si muove dal potenziale + alto(polo positivo) a quello più basso(negativo) ?

Se c'è solo una batteria senza circuito esterno, dal polo positivo non possono uscire particelle perché non c'è un conduttore che le trasporti all'altro polo della batteria. Dunque restano tutte accumulate sul polo positivo, mentre sul polo negativo si accumulano particelle negative. Questi due poli dunque hanno una differenza di potenziale pari a E (f.e.m. della batteria), e questa differenza di potenziale resta costante perchè in questo caso l'ascensore si ferma. Infatti il potenziale elettrostatico in questo caso equilibra esattamente il potenziale elettrochimico e si rimane in situazione di stallo senza consumare energia.

AlexlovesUSA
Ho sbagliato ad esprimermi infatti intendevo dire:cosa succede alla carica se il circuito è composto da una batteria e da un filo che collega polo positivo con quello negativo?

Falco5x
Ogni filo ha una sua resistenza, ma se proprio non ce l'avesse (filo a resistenza bassissima) la batteria può erogare una corrente massima detta corrente di corto circuito. Con questa corrente la tensione tra il polo positivo e il polo negativo è nulla, ma lo schema che in questo caso si adotta è immaginare la cosiddetta resistenza interna che internamente alla batteria collega il polo positivo reale, accessibile dall'esterno, con un polo positivo ideale interno alla batteria la cui f.e.m. è sempre la E nominale. Allora la corrente esce dal polo positivo interno ideale, attraversa questa resistenza interna, esce dal polo positivo reale e tramite il filo rientra subito nel polo negativo. Tutto va come nel caso del circuito esterno resistivo, con la sola differenza che adesso la resistenza del circuito è semplicemente la resistenza interna della batteria per cui la corrente in gioco è molto alta e la batteria si scarica prestissimo (oltre a scaldarsi da matti).

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.