Bobina

Aristotele2
Ciao a tutti!!vi propongo questo esercizio svolto:

Una bobina piana con $N=20$ spire e di raggio $R_2=10 cm$ circonda un solenoide di raggio $R_1=3 cm$ avente $n=10^3$ spire/metro.La corrente nel solenoide varia nel tempo come $i=i_0*sen*omega*t$,con $i_==5A$ e $omega=120 s^-1$.Determinare la f.e.m. indotta nella bobina nell’istante $t=2pi/omega$.

$Phi(B)=int_S vecB*u_n*dS=int_S B*dS=int_R_1^R_2 mu_0*n*i*2pi*r*dr$
$=mu_0*n*i*2pi*int_R_1^R_2 r*dr= mu_0*n*i*2pi*[r^2/2]^R_2_R_1=$
$=(1/2)*mu_0*n*i*2pi*( R_2-R_1)$.

Poichè $i=i_0*sen*omega*t$ allora:

$mu_0*n* i_0*sen*omega*t *pi*( R_2^2-R_1^2)$.
Quindi la f.e.m. indotta nella bobina sarà:
$E=-dPhi/dt=-mu_0*n*i_0*( R_2^2-R_1^2)cos*2pi*omega$
Per $N=20$ spire:
$E=- N*mu_0*n*i_0*( R_2^2-R_1^2)cos*2pi*omega=216,2*10^-2 V$.

E’ svolto bene??
Grazie anticipatamente!!!

Risposte
Aristotele2
Ho fatto bene a considerare il solenoide come infinito cioè con la distanza $>$ $>$ di del raggio $R$???

Aristotele2
?????

.Pupe.1
Alcune cose:
1) Nell'integrale credo tu faccia un po' di confusione con la sintassi della formula (capita spesos anche a me con MathType)
2) Stando al testo il solenoide è di lunghezza indefinita, quindi l'approssimazione che usi va bene.
3) Il flusso non è presente all'esterno ma solo all'interno del solenoide. Pertanto quando sviluppi l'integrale tra R1 e R2 sbagli, va da 0 a R1.
4) Tale integrale non serve, nel senso che B all'interno del solenoide è costante su tutta la sezione. Basta moltiplicare il campo B prodotto da un soleniode al suo interno per la sezione del solenoide.
5) Quando hai trovato il flusso concatenato calcoli la fem indotta come derivata del flusso... mi pare che ci vada anche una costante.

Spero di non essere stato troppo conciso
Ciao
P.

Aristotele2
".Pupe.":
Alcune cose:
4) Tale integrale non serve, nel senso che B all'interno del solenoide è costante su tutta la sezione. Basta moltiplicare il campo B prodotto da un soleniode al suo interno per la sezione del solenoide.

Cioè il campo $B$ è questo $B=mu_0*n*i*2pi*R_1$ dove $S=2pi*R_1$??

.Pupe.1
$S=2 pi R$ ??????

non confondere un area con un perimetro!!!

e poi il campo in un solenoide se non erro vale

$B(t)=mu_0 n i(t)$

Lo moltiplichi per la sezione (non per il perimetro) e trovi il flusso.

P.

Aristotele2
E quale è la sezione!!! $pi*R^2$

.Pupe.1
Beh, direi di si, l'area di un cerchio è proprio $pi R^2$

P.

Aristotele2
ok! grazie mille!!

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.