Vettore normale
Salve a tutti ho un problema con questo tipo di esercizio:
Data la curva $ (\gamma,I) $ con $ I=[0,2pi] $ e parametrizzazione $ (\gamma (t) : (1/2)cost + sent ; (1/2)cost - sent)$
Scrivere l'equazione cartesiana della retta tangente al sostegno della curva nel punto $ P= ([1+2(3)^(1/2)]/4 ; [1-2(3)^(1/2)]/4] ) $
Ora io ho trovato il vettore velocità, ma non so come si trova il vettore normale al sostegno nel punto P.
Qualcuno può trovarmi il vettore normale al sostegno nel punto P?
Grazie.
Data la curva $ (\gamma,I) $ con $ I=[0,2pi] $ e parametrizzazione $ (\gamma (t) : (1/2)cost + sent ; (1/2)cost - sent)$
Scrivere l'equazione cartesiana della retta tangente al sostegno della curva nel punto $ P= ([1+2(3)^(1/2)]/4 ; [1-2(3)^(1/2)]/4] ) $
Ora io ho trovato il vettore velocità, ma non so come si trova il vettore normale al sostegno nel punto P.
Qualcuno può trovarmi il vettore normale al sostegno nel punto P?
Grazie.
Risposte

questa matrice ruota il vettore di Pi/2 antiorario, moltiplica quindi il vettore tangente. Ma non ho ben caspito in quale punto dell' esercizio ti serve, per la retta tangente basta il vettore tangente ovvero r'(t)