Studio serie parametrica con sviluppi di Maclaurin
Ciao a tutti,
il seguente esercizio prevede lo studio della convergenza della seguente serie parametrica con $ alpha > 0 $ utilizzando gli sviluppi di Maclaurin.
$ \sum_{k=1}^oo ln((1+ 1/k^alpha)/(e^sin(1/k^2))) $
Innanzitutto ho pensato di utilizzare la proprietà dei logaritmi:
$ \sum_{k=1}^oo ln(1+ 1/k^alpha) - ln(e^sin(1/k^2)) $
A questo punto ricorrerei alla scrittura dei polinomi di Maclaurin fino ad un certo ordine. Ma qui incontro dei problemi sullo studio della convergenza.
Sapete darmi una mano?
Grazie.
il seguente esercizio prevede lo studio della convergenza della seguente serie parametrica con $ alpha > 0 $ utilizzando gli sviluppi di Maclaurin.
$ \sum_{k=1}^oo ln((1+ 1/k^alpha)/(e^sin(1/k^2))) $
Innanzitutto ho pensato di utilizzare la proprietà dei logaritmi:
$ \sum_{k=1}^oo ln(1+ 1/k^alpha) - ln(e^sin(1/k^2)) $
A questo punto ricorrerei alla scrittura dei polinomi di Maclaurin fino ad un certo ordine. Ma qui incontro dei problemi sullo studio della convergenza.
Sapete darmi una mano?
Grazie.
Risposte
Ciao Matteoo94,
In effetti basta il primo ordine:
$\sum_{k=1}^{+\infty} ln[(1+ 1/k^{\alpha})/(e^sin(1/k^2))] = \sum_{k=1}^{+\infty} ln(1+ 1/k^{\alpha}) - \sum_{k=1}^{+\infty} ln e^sin(1/k^2) = \sum_{k=1}^{+\infty} ln(1+ 1/k^{\alpha}) - \sum_{k=1}^{+\infty} sin(1/k^2) $
La seconda serie non dipende da $\alpha $ e si comporta come la serie $ \sum_{k=1}^{+\infty} 1/k^2 $ che è la serie armonica generalizzata con parametro $ p = 2 > 1 $, notoriamente convergente a $\pi^2/6 $; la prima serie invece dipende da $\alpha $ e può convergere solo se $\alpha > 0 $ (per $\alpha <= 0 $ non è soddisfatta la condizione necessaria di convergenza di Cauchy $\lim_{k \to +\infty} a_k(\alpha) = 0 $) ed in tal caso si comporta come la serie $ \sum_{k=1}^{+\infty} 1/k^{\alpha} $ che è la serie armonica generalizzata, notoriamente convergente se $\alpha > 1 $.
Si conclude che la serie proposta converge se $\alpha > 1 $.
"Matteoo94":
A questo punto ricorrerei alla scrittura dei polinomi di Maclaurin fino ad un certo ordine.
In effetti basta il primo ordine:
$\sum_{k=1}^{+\infty} ln[(1+ 1/k^{\alpha})/(e^sin(1/k^2))] = \sum_{k=1}^{+\infty} ln(1+ 1/k^{\alpha}) - \sum_{k=1}^{+\infty} ln e^sin(1/k^2) = \sum_{k=1}^{+\infty} ln(1+ 1/k^{\alpha}) - \sum_{k=1}^{+\infty} sin(1/k^2) $
La seconda serie non dipende da $\alpha $ e si comporta come la serie $ \sum_{k=1}^{+\infty} 1/k^2 $ che è la serie armonica generalizzata con parametro $ p = 2 > 1 $, notoriamente convergente a $\pi^2/6 $; la prima serie invece dipende da $\alpha $ e può convergere solo se $\alpha > 0 $ (per $\alpha <= 0 $ non è soddisfatta la condizione necessaria di convergenza di Cauchy $\lim_{k \to +\infty} a_k(\alpha) = 0 $) ed in tal caso si comporta come la serie $ \sum_{k=1}^{+\infty} 1/k^{\alpha} $ che è la serie armonica generalizzata, notoriamente convergente se $\alpha > 1 $.
Si conclude che la serie proposta converge se $\alpha > 1 $.
Grazie