Risoluzione limite
Salve a tutti! Sono qui per chiedervi un aiutino! Sto cercando di calcolare eventuale asintoto obliquo di questa funzione: $lim _(x->infty) ( root(3)(x^3-x^2) )$ , ho trovato il coefficiente angolare che dovrebbe essere $m=1$, ma non riesco a risolvere la forma indeterminata del limite necessario al calcolo di q. Ricordo la formula per il calcolo di q: per y(asintoto)=$mx+q$ -> $q=lim_(x->+-infty) ( f(x) -mx )$ . La funzione diventa quindi $lim_(x->+-infty) ( root(3) (x^3 -x^2) -1x) $ di cui riscontro forma indeterminata $(o*infty)$ e non so come procedere. Qualcuno può darmi una mano?
grazie in anticipo

Risposte
Prova a razionalizzare e vedi che succede...