Raggio di convergenza di una serie di potenze
Ciao a tutti,
mi sapreste dare una mano con questa dimostrazione?
Sia $sum_{n=0}^(+oo) a_n(x-x_0)^n$ una serie di potenze di centro $x_0$ e coefficienti ${a_n}$ e sia $rho$ il suo raggio di convergenza. Se $0
Per la seconda proprietà dell'estremo superiore esisterà $h in H$ ($H={h>=0:sum_{n=0}^(+oo) |a_n|h^n text(converge)}$) tale che $|x-x_0|
mi sapreste dare una mano con questa dimostrazione?
Sia $sum_{n=0}^(+oo) a_n(x-x_0)^n$ una serie di potenze di centro $x_0$ e coefficienti ${a_n}$ e sia $rho$ il suo raggio di convergenza. Se $0
Per la seconda proprietà dell'estremo superiore esisterà $h in H$ ($H={h>=0:sum_{n=0}^(+oo) |a_n|h^n text(converge)}$) tale che $|x-x_0|
Risposte
Comunque sia è una dimostrazione che trovi in qualsiasi testo che tratti l'argomento, penso...
Ho guardato sul mio testo di riferimento ma non ho capito come fare....
Ciao! Sono il tuo Tutor AI, il compagno ideale per uno studio interattivo. Utilizzo il metodo maieutico per affinare il tuo ragionamento e la comprensione. Insieme possiamo:
- Risolvere un problema di matematica
- Riassumere un testo
- Tradurre una frase
- E molto altro ancora...
Il Tutor AI di Skuola.net usa un modello AI di Chat GPT.
Per termini, condizioni e privacy, visita la relativa pagina.
Per termini, condizioni e privacy, visita la relativa pagina.