Massimi e Minimi di un insieme
Buongiorno a tutti, di recente sto affrontando degli esercizi che richiedono di trovare massimo e/o minimo di un determinato insieme. Il mio problema è che non capisco la logica che ci sta dietro, cioè non so se ci sono calcoli immediati che conducono ad una soluzione precisa oppure bisogna fare diverse prove, vi lascio alcuni esempi che ho trovato per intenderci:
$A = { (2+(-1)^n)/(2^n+(-1)^(n+1)), n in NN, n >= 1}$
$B = { (2+2^(-n))/(3-3^(-n)), n in NN, n >= 1}$
Se qualcuno conosce un metodo efficace per calcolare i massimi e minimi mi salverebbe dal vuoto che ho in questo momento.
Grazie in anticipo.
$A = { (2+(-1)^n)/(2^n+(-1)^(n+1)), n in NN, n >= 1}$
$B = { (2+2^(-n))/(3-3^(-n)), n in NN, n >= 1}$
Se qualcuno conosce un metodo efficace per calcolare i massimi e minimi mi salverebbe dal vuoto che ho in questo momento.

Grazie in anticipo.
Risposte
La prima cosa è farsi un'idea di come vanno le cose.
Scrivi qualche elemento degli insiemi e vedi cosa ne trai.
Scrivi qualche elemento degli insiemi e vedi cosa ne trai.