Limite con taylor
ciao a tutti, potreste per favore dirmi se il seguente esercizio è svolto correttamente?
$lim_(x->o) ((ln(1+x^2)-x^2 cos(x/3))/(x^2-2xsen(x/2)))$
per lo sviluppo del numeratore ho proceduto nel seguente modo:
$cos(x/3)= 1-(x^2)/18 +o(x^2)$ che moltiplicato per $x^2$ diventa $x^2 -(x^4)/18 +o(x^4)$
$ln(1+x^2)= x^2-(x^4)/2$
quindi il numeratore mi diventa: $-4/9 x^4 +o(x^4)$
il denominatore:
$sen(x/2)= x/2-(x^3)/48 +o(x^3)$
e tutto il denominatore è quindi: $x^4 /24 +o(x^4)$
allora il limite mi viene $lim_(x->0) ((-4/9 x^4 +o(x^4))/(1/24 x^4 +o(x^4)))=-32/3$
ve lo chiedo perchè facendolo con la calcolatrice mi da come risultato $0$ e non riesco a capire il perchè!
Vi ringrazio in anticipo per l'attenzione!
$lim_(x->o) ((ln(1+x^2)-x^2 cos(x/3))/(x^2-2xsen(x/2)))$
per lo sviluppo del numeratore ho proceduto nel seguente modo:
$cos(x/3)= 1-(x^2)/18 +o(x^2)$ che moltiplicato per $x^2$ diventa $x^2 -(x^4)/18 +o(x^4)$
$ln(1+x^2)= x^2-(x^4)/2$
quindi il numeratore mi diventa: $-4/9 x^4 +o(x^4)$
il denominatore:
$sen(x/2)= x/2-(x^3)/48 +o(x^3)$
e tutto il denominatore è quindi: $x^4 /24 +o(x^4)$
allora il limite mi viene $lim_(x->0) ((-4/9 x^4 +o(x^4))/(1/24 x^4 +o(x^4)))=-32/3$
ve lo chiedo perchè facendolo con la calcolatrice mi da come risultato $0$ e non riesco a capire il perchè!
Vi ringrazio in anticipo per l'attenzione!
Risposte
Una calcolatrice che fa i limiti? Wow...
Controllando il procedimento mi sembra corretto, ed una rapida occhiata al grafico di wolfram mi ( ti ) da conferma.
Controllando il procedimento mi sembra corretto, ed una rapida occhiata al grafico di wolfram mi ( ti ) da conferma.
è giusto