Integrazione complessa parametrizzazione
salve ragazzi ho questo integrale:
$int_gamma e^(-7z) dz$ e dice con $gamma$ che va da $(1,-2pi)$ a $(3,4pi)$
ho alcuni dubbi.... ho scritto l'equazione della retta che passa per i due punti ... e mi esce
$y=3xpi-5pi$
e ho trovato :
$gamma:{ ( x(t)=t ),( y(t)=2piT-5pi ):}$
ora riscrivo l'integrale come
$int e^(-7x)(cos7y-isen7y)(dx+idy)$
ma $t$ tra quanto varia e perché?!?
$int_gamma e^(-7z) dz$ e dice con $gamma$ che va da $(1,-2pi)$ a $(3,4pi)$
ho alcuni dubbi.... ho scritto l'equazione della retta che passa per i due punti ... e mi esce
$y=3xpi-5pi$
e ho trovato :
$gamma:{ ( x(t)=t ),( y(t)=2piT-5pi ):}$
ora riscrivo l'integrale come
$int e^(-7x)(cos7y-isen7y)(dx+idy)$
ma $t$ tra quanto varia e perché?!?
Risposte
up
vabbè
"guardiax":
salve ragazzi ho questo integrale:
$int_gamma e^(-7z) dz$ e dice con $gamma$ che va da $(1,-2pi)$ a $(3,4pi)$
ho alcuni dubbi.... ho scritto l'equazione della retta che passa per i due punti ... e mi esce
$y=3xpi-5pi$
e ho trovato :
$gamma:{ ( x(t)=t ),( y(t)=2piT-5pi ):}$
ora riscrivo l'integrale come
$int e^(-7x)(cos7y-isen7y)(dx+idy)$
ma $t$ tra quanto varia e perché?!?
Sembra che tu voglia calcolare la forma differenziale associata e potresti dunque accorgerti che $t$ deve variare tra 1 e 3, dato che stai calcolando un integrale di linea sul piano di Argand-Gauss e la linea in questione è quel segmento di retta che ha per estremi i punti dati dal problema.
"guardiax":
salve ragazzi ho questo integrale:
$int_gamma e^(-7z) dz$ e dice con $gamma$ che va da $(1,-2pi)$ a $(3,4pi)$
ho alcuni dubbi.... ho scritto l'equazione della retta che passa per i due punti ... e mi esce
$y=3xpi-5pi$
e ho trovato :
$gamma:{ ( x(t)=t ),( y(t)=2piT-5pi ):}$
ora riscrivo l'integrale come
$int e^(-7x)(cos7y-isen7y)(dx+idy)$
ma $t$ tra quanto varia e perché?!?
Per stabilire la parametrizzazione da associare al segmento in questione devi aver preso una decisione:
infatti per poter dire che \(x(t) = t\) automaticamente stai dando per scontato che \(t \in [1,3]\) cioè dalla parte reale del primo estremo alla parte reale dell'altro estremo.
L'espressione della curva però è sbagliata, dovrebbe essere \(3t\pi\) e non \(2\pi T\); \(T\) credo fosse solo un errore di battitura.