Integrale doppio con modulo
Salve ragazzi ho un problema con gli integrali doppi con il modulo
$intint_D (1/3y+2xe^y)dxdy$ con $D={1/2<|x|<1 , x^2
come disegno il dominio?!
$intint_D (1/3y+2xe^y)dxdy$ con $D={1/2<|x|<1 , x^2
come disegno il dominio?!
Risposte
In generale, se $a>0$ è un numero reale, allora
$$|x|>a\ \Leftrightarrow\ x< -a\ \vee\ x>a$$
e
$$|x| Pertanto la prima parte del dominio consiste delle strisce (parallele all'asse delle ordinate)
$$-1 < x <-\frac{1}{2},\qquad \frac{1}{2} < x <1$$
La presenza del valore assoluto sotto la radice, invece, ti permette di disegnare la funzione radice stessa anche per valori negativi della $x$.
$$|x|>a\ \Leftrightarrow\ x< -a\ \vee\ x>a$$
e
$$|x| Pertanto la prima parte del dominio consiste delle strisce (parallele all'asse delle ordinate)
$$-1 < x <-\frac{1}{2},\qquad \frac{1}{2} < x <1$$
La presenza del valore assoluto sotto la radice, invece, ti permette di disegnare la funzione radice stessa anche per valori negativi della $x$.
riscrivendo il dominio che devo disegnare ho:
$-1
$-1
No, per quanto riguarda la seconda parte, devi tenere conto della funzione radice definita su tutto l'asse reale. Se togli il valore assoluto, avrei solo la parte definita su $[0,+\infty)$.
ma non esiste la radice di un numero negativo....
dovrebe essere
$x^2
dovrebe essere
$x^2
up
"guardiax":
up
forse non ci sono risposte perché non c'è nulla da rispondere....dài la funzione è banale..gli estremi pure....
se non riesci disegna sto grafico delle due funzioni (si fa anche a mente...) una è una parabola con vertice nell'origine l'altra è come $sqrt(x)$ , funzione pari, definita su tutto $R$....metti giù sto integrale e posta i passaggi.....
ma infatti con l'aiuto di ciampax si e facilitato molto ma volevo una risposta sull'ultima cosa di cui stavamo parlando...
La radice di un numero negativo naturalmente non esiste se non nei complessi.
Ma se studi $sqrtx$ avrai che il suo dominio è $x>=0$
Se studi $sqrt(-x)$ avrai che il suo dominio è $x<=0$
Ma se studi $sqrtx$ avrai che il suo dominio è $x>=0$
Se studi $sqrt(-x)$ avrai che il suo dominio è $x<=0$
dunque la devo disegnare o no quella con negativo e se si come si fa!?
In poche parole per $x>=0$ avrai
$ x^2
e per $x<0$ avrai
$ x^2
Per il disegno pensa alla simmetria rispetto asse y
$ x^2
e per $x<0$ avrai
$ x^2
Per il disegno pensa alla simmetria rispetto asse y
Ciao! Sono il tuo Tutor AI, il compagno ideale per uno studio interattivo. Utilizzo il metodo maieutico per affinare il tuo ragionamento e la comprensione. Insieme possiamo:
- Risolvere un problema di matematica
- Riassumere un testo
- Tradurre una frase
- E molto altro ancora...
Il Tutor AI di Skuola.net usa un modello AI di Chat GPT.
Per termini, condizioni e privacy, visita la relativa pagina.
Per termini, condizioni e privacy, visita la relativa pagina.