Integrale con residuo

dario18
Salve a tutti volevo alcuni consigli sullo svolgimento di questo integrale:

$ \int_0^oo dx/(x^4+x^2+1) $

ho cominciato trovando i poli..però mi risulta una radice quarta! il risultato è $ (pi*sqrt3)/6 $ e a me risulta $ (pi*sqrt2)/(2*sqrt3 $ però con radice quarta! :oops:

Grazie in anticipo

Risposte
Palliit
[xdom="Palliit"]Sposto in Analisi.[/xdom]

RenzoDF
"Darioo":
... ho cominciato trovando i poli..però mi risulta una radice quarta!

Puoi spiegare più estesamente?

dario18
Si, allora sostituisco $ x^2=t $ quindi l'equazione al denominatore diventa: $ t^2+t+1 $ trovo le radici che sono $ t=-1/2+- 1/2sqrt3i $ quindi mi trovo z che sarebbe con una radice quarta. Però pensandoci potrei lasciare z al quadrato e procedere così...giusto? Io l'ho svolto adesso in questo modo e il risultato mi è venuto $ 2pisqrt3/3 $ quindi lo stesso sbagliato.
Grazie in anticipo

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.