Esercizio su limite
Ciao a tutti
Ho un dubbio su un limite
Se fosse:
$Lim/(x->oo) (senx - cosx)/x$
Io uso De Hopital e mi viene quel limite di $cosx +senx$
Mi viene 0 perchè
a $senx$ quel limite non esiste
mentre per $cosx$ tende a $0$ giusto?
Ho un dubbio su un limite
Se fosse:
$Lim/(x->oo) (senx - cosx)/x$
Io uso De Hopital e mi viene quel limite di $cosx +senx$
Mi viene 0 perchè
a $senx$ quel limite non esiste
mentre per $cosx$ tende a $0$ giusto?
Risposte
Lo puoi riscrivere come $lim_(x rarr \infty) sinx/x - lim_(x rarr \infty) cosx/x$, i numeratori sono limitati mentre il denominatore va a infinito in entrambi i casi quindi i due limiti vanno a 0.
Due note:
1) anche il limite ad infinito di $cosx$ non esiste
2) non puoi applicare de l'hopital perchè non hai una forma indeterminata del tipo $0/0$ o $\infty/(\infty)$
Due note:
1) anche il limite ad infinito di $cosx$ non esiste
2) non puoi applicare de l'hopital perchè non hai una forma indeterminata del tipo $0/0$ o $\infty/(\infty)$
Avrei dovuto applicare il teorema del confronto in effetti