Esercizio serie

JDM89
Salve a tutti, l'esercizio mi chiede di studiare il comportamento della serie:
$ sum_{n=1}^\infty (b*n+1)/(1+n^2) $ con $ b>=0 $
se b=0 la serie è evidentemente convergente
b>0: $ sum_{n=1}^\infty (b*n+1)/(1+n^2) $ $ => $ $ (b*n*(1+1/(b*n)))/(n^2*(1/n^2+1) $ =
$ (b*(1+1/(b*n)))/(n*(1/n^2+1) $ che n $ rightarrow $ $ oo $ $ => $
$ sum_{n=1}^\infty b/n = b*sum_{n=1}^\infty 1/n $ $rarr$ +oo
Spero di non aver scritto troppe cavolate :-D

Risposte
Noisemaker
ok

JDM89
"Noisemaker":
ok

:-) grazie

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.