Esercizio d'esame analisi 1.

Salve, il prof mi ha consegnato una copia del esame di analisi I che ho svolto in gennaio, e c'è un problema che pure ora non ho idea di come svolgere, sarei curioso di sapere come farlo. O almeno un suggerimento.
Sia \( \mathcal{P}=\{ A \subset \mathbb{R} : \#(A) < + \infty \} \) dove $\#(X)$ indica la cardinalità dell'insieme $X$, e sia $f: \mathbb{R} \rightarrow \mathbb{R}$ una funzione tale che
\[ \sup\limits_{A \in \mathcal{P}} \sum\limits_{x \in A} \begin{vmatrix} f(x) \end{vmatrix} < + \infty \]
e per tutti gli $n \in \mathbb{N}$ sia $a_n= \#(\{x : f(x) > \frac{1}{n} \})$. Allora abbiamo
\[ \sum\limits_{n=2}^{\infty} \frac{a_n}{n^2 \log^2 n} < + \infty \]
Vero o falso? Se vero dimostrare se falso dare un contro-esempio.

Allora, sebbene non sia un argomentazione valida, mi sembra troppo particolare come problema per essere falso :-D
Dunque credo sia vero. Pertanto cercherei di minorarlo con qualche cosa. Forse con un integrale?
L'idea che ho avuto è questa:

Penso sia scorretta la minorazione che ho in mente, dovrei ragionarci meglio. Quello che ho in mente di dimostrare ma non ho idea di come fare è che per ogni $n \in \mathbb{N}$ e pertanto fissiamo un $n$ arbiatrario abbiamo che $a_n < + \infty $ e questo significherebbe che l'insieme \( \mathcal{A}_n := \{ x : f(x) > \frac{1}{n} \} \) è di cardinalità finita. Dunque $\forall n \in \mathbb{N}$ risulta che \( \mathcal{A}_n \in \mathcal{P} \). Supponendo vera questa affermazione avrei che:
\[ \sup\limits_{n \in \mathbb{N}} \sum\limits_{x \in \mathcal{A}_n} \begin{vmatrix} f(x) \end{vmatrix} \leq \sup\limits_{A \in \mathcal{P}} \sum\limits_{x \in A} \begin{vmatrix} f(x) \end{vmatrix} < + \infty \]
E pertanto siccome $a_{n+1} \geq a_n $ in quanto $ \frac{1}{n+1} \leq \frac{1}{n} $ e dunque \( \mathcal{A}_{n} \subset \mathcal{A}_{n+1} \), e poiché per ogni \( n \in \mathbb{N} \) abbiamo che \( \forall x \in \mathcal{A}_n \) risulta \( f(x) >0 \) dunque \( \forall n \in \mathbb{N} \) risulta:
\[ \sum\limits_{x \in \mathcal{A}_n} \begin{vmatrix} f(x) \end{vmatrix} = \sum\limits_{x \in \mathcal{A}_n} f(x) \leq \sum\limits_{x \in \mathcal{A}_{n+1}} f(x) = \sum\limits_{x \in \mathcal{A}_{n+1}} \begin{vmatrix} f(x) \end{vmatrix} \]

Risulta chiaro pertanto che \[ \lim\limits_{n\to + \infty} \sum\limits_{x \in \mathcal{A}_n} f(x) < + \infty \]
Ma d'altro canto abbiamo anche che $\forall n \in \mathbb{N} $ risulta
\[ \sum\limits_{x \in \mathcal{A}_n} \frac{1}{n} \leq \sum\limits_{x \in \mathcal{A}_n} f(x) \]
Dunque forzatamente \( M:= \sup\limits_{n \in \mathbb{N}} a_n < + \infty \) altrimenti avrei
\[ +\infty= \sum\limits_{k= n}^{\infty} \frac{1}{k} \leq \sup\limits_{n \in \mathbb{N}} \sum\limits_{x \in \mathcal{A}_n} \frac{1}{n} \leq \sup\limits_{n \in \mathbb{N}} \sum\limits_{x \in \mathcal{A}_n} f(x) < + \infty \]
Che è un assurdo
Pertanto ottengo
\[(1) \ \ \ \ \sum\limits_{n=2}^{\infty} \frac{a_n}{n^2 \log^2 n} \leq \lim\limits_{ \beta \to \infty} \int_{2}^{\beta} \frac{M}{x^2 \log^2 x} dx= M\lim\limits_{ \beta \to \infty} \int_{2}^{\beta} \frac{1}{x^2 \log^2 x} dx \]
Credo che questo integrale converga in quanto
\[ M\lim\limits_{ \beta \to \infty} \int_{2}^{\beta} \frac{1}{x^2 \log^2 x} dx \leq M\lim\limits_{ \beta \to \infty} \int_{2}^{\beta} \frac{1}{x^2} dx = M \lim\limits_{\beta \to \infty} (-\frac{1}{\beta} + \frac{1}{2} )= \frac{M}{2} \]

Non sono minimamente sicuro del mio ragionamento, ma anche fosse corretto dovrei comunque dimostrare che $\forall n \in \mathbb{N} $ ho \( \mathcal{A}_n \in \mathcal{P} \).
Per dimostrare ciò immagino che dovrei utilizzare il fatto che \[ \sup\limits_{A \in \mathcal{P}} \sum\limits_{x \in A} f(x) \]
Converge assolutamente e dunque converge. Ma non ne ho idea... qualche suggerimento?

Risposte
"dissonance":
[quote="080e73990d22b9e30ee6fddddc45a902d78283e6"]Ok, penso che un modo per vederlo sia usando la disuguaglianza di Chebyshev con la counting measure. La counting measure è sostanzialmente la cardinalità dell'insieme.

In realtà questa è una cosa ovvia, solo che detta così con le misure sembra spaventosa. Infatti, per definizione, \(x\in A_n\) se e solo se \(f(x)>\frac1n\). Quindi,
\[
\sum_{x\in A_n} f(x)>\sum_{x\in A_n} \frac{1}{n}=\frac{1}{n} \#A_n.\]

Come già notato da obnoxius, questa semplice osservazione porta subito alla soluzione dell'esercizio: difatti, per quanto appena detto, \(a_n=\#A_n\) verifica \(a_n\le Cn\) per una costante \(C>0\) e quindi
\[
\sum_{n=1}^\infty \frac{a_n}{n^2\log n} \le \sum_{n=1}^\infty \frac{1}{n\log n}<\infty.\][/quote]
Chiaro, però la costante \( C \) dipende da \( n \), nel senso \( C \geq \#A_n \), corretto?

dissonance
Ho aggiornato il post precedente, aggiungendo il quadrato sul logaritmo e rispondendo all'obiezione di 3m0o.

Una considerazione finale. Questo esercizio non è difficile come sembra, è solo formulato in una maniera tale da renderlo più simile a un problema di ricerca. (Si potrebbe dire che è formulato con cattiveria). Se la consegna fosse stata: "dimostrare che \(a_n=O(n)\)", sarebbe stato molto più facile.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.