Esercizi limiti di successioni
Vorrei sapere se questi due limiti di successioni sono corretti, soprattutto per quanto riguarda il modo in cui li ho calcolati:
1) $ a_n = \frac{(-1)^n + 2^n}{2^n + n^2} = \frac{2^n(\frac{(-1)^n}{2^n} + 1)}{2^n(1+\frac{n^2}{2^n})} rarr 1 $
I $ 2^n $ si semplificano, $ \frac{(-1)^n}{2^n} rarr 0 $, $ 2^n $ è di ordine superiore rispetto a $ n^2 $ e il rapporto tende a 0, quindi in definitiva $ a_n rarr 1 $
2) $ a_n = root(n)(10^n + 2) = root(n)(10^n (1 + \frac{2}{10^n})) = 10 * root(n)(1 + \frac{2}{10^n}) rarr 10 $
$ \frac{2}{10^n} rarr 0^+ $ e $ (1^+)^(0^+) rarr 1 $, quindi $ a_n rarr 10 $
1) $ a_n = \frac{(-1)^n + 2^n}{2^n + n^2} = \frac{2^n(\frac{(-1)^n}{2^n} + 1)}{2^n(1+\frac{n^2}{2^n})} rarr 1 $
I $ 2^n $ si semplificano, $ \frac{(-1)^n}{2^n} rarr 0 $, $ 2^n $ è di ordine superiore rispetto a $ n^2 $ e il rapporto tende a 0, quindi in definitiva $ a_n rarr 1 $
2) $ a_n = root(n)(10^n + 2) = root(n)(10^n (1 + \frac{2}{10^n})) = 10 * root(n)(1 + \frac{2}{10^n}) rarr 10 $
$ \frac{2}{10^n} rarr 0^+ $ e $ (1^+)^(0^+) rarr 1 $, quindi $ a_n rarr 10 $
Risposte
A me sembrano corretti.