Equazione differenziale del secondo ordine non omogenea
Ciao ho la seguente equazione differenziale del secondo ordine
$y^{\prime}'+4y^{\prime}+4y=x^-2e^(-2x)$
Sostituisco i valori nel polinomio caratteristico e trovo come soluzione dell'omogenea
$y_o=c_1e^(-2x)+c_2xe^(-2x)$
a questo punto provo a calcolare la soluzione particolare con il metodo della somiglianza e trovo
$g(x)=e^(\lamdax)Q(x)$
ed
$\bar y=x^-2e^(-2x)\bar Q(x)$
a questo punto ho $\bar Q(x)=Ax^-2+Bx^-1+C$ e quindi
$\bar y=Ax^-4e^(-2x)+Bx^-3e^(-2x)+Cx^-2e^(-2x)$
calcolando la derivata prima e seconda vengono fuori un bel po di calcoli, e quindi mi viene il dubbio se il calcolo della soluzione particolare sia corretto. Cosa ne pensate?
$y^{\prime}'+4y^{\prime}+4y=x^-2e^(-2x)$
Sostituisco i valori nel polinomio caratteristico e trovo come soluzione dell'omogenea
$y_o=c_1e^(-2x)+c_2xe^(-2x)$
a questo punto provo a calcolare la soluzione particolare con il metodo della somiglianza e trovo
$g(x)=e^(\lamdax)Q(x)$
ed
$\bar y=x^-2e^(-2x)\bar Q(x)$
a questo punto ho $\bar Q(x)=Ax^-2+Bx^-1+C$ e quindi
$\bar y=Ax^-4e^(-2x)+Bx^-3e^(-2x)+Cx^-2e^(-2x)$
calcolando la derivata prima e seconda vengono fuori un bel po di calcoli, e quindi mi viene il dubbio se il calcolo della soluzione particolare sia corretto. Cosa ne pensate?
Risposte
Ho capito l'errore devo usare il metodo delle variazioni delle costanti. Cosi facendo i calcoli non sono molto complessi.
Esatto, il termine noto non è nella forma "buona"...
Si trova $\bar y = - e^{-2x} ln x $

Si trova $\bar y = - e^{-2x} ln x $