Equazione differenziale con serie infinita

gionny98
$ y''=y $
supponendo come soluzione la serie:
$ y=sum_(n=0)^oo a_nx^n $
La soluzione del libro è: $ y=a_0cosh x+a_1sinh x $
Devo ricondurre la soluzione precedente a $ y=c_1e^x+c_2e^-x $
$ y=a_0(e^x+e^-x)/2+a_1(e^x-e^-x)/2 $
$ y=e^x/2(a_0+a_1)+e^-x/2(a_0-a_1) $
se $ (a_0+a_1)=2c_1 $ e se $ (a_0-a_1)=2c_2 $
$ y=c_1e^x+c_2e^-x $
Il procedimento è giusto o sbaglio qualcosa?

Risposte
pilloeffe
:smt023

dissonance
Che c'entra la serie?

gugo82
Beh, nulla… Immagino si volesse risolvere la EDO col metodo di Frobenius (inutilmente, come ovvio che sia, se è un esercizio; con un po’ di senso se è un esempio motivazionale).

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.