Dubbio sviluppo di taylor

arrow1
In questi due sviluppi di taylor ho due dubbi

Nel primo log(1+x^3) che diventa x^3 -(x^6)/2 +(x^12)/3 +o(x^12)
dove il 6 lo abbiamo trovato moltiplicando 2 per 3
perchè abbiamo moltiplicato 3 per 4 (così da avere 12) e non per 2?

Nel secondo e^(3x) che diventa 1+3x+(9/2)x^2
perchè abbiamo il 9?

Grazie

Risposte
Summerwind78
Ciao

seconda domanda:

il termine di secondo grado è dato da $(f''(0))/(2!) x^2$ dove $f''(0)$ è la derivata seconda calcolata in zero

quindi devi derivare 2 volte la funzione $e^(3x)$...
vediamolo insieme:

la derivata prima è $D(e^(3x))\cdot D(3x) = e^(3x)\cdot 3 = 3e^(3x)$

la derivata seconda quindi sarà $D( 3e^(3x))= 3D(e^(3x)) = 3\cdot 3e^(3x) = 9e^(3x)$

ecco da dove spunta il 9

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.