Disporre in ordine crescente i seguenti numeri
Sfogliando il mio libro di analisi 1 , ho trovato quest'esercizio molto interessante sull'ordinamento dei numeri .
Metti in ordine crescente i seguenti numeri:
log$e^4$+log$e^5$
tan$16/9\pi$
2
$sqrt(38)$
logaritmo in base 10 di 0,00001
$(1+1/120)^120$
1
e=numero di nepero
$(((100),(98)))/(((33),(32)) ((25),(24)))$
$-(\sum_{n=2}^oo 1/2^n)$
$-(\sum_{n=-4}^-2 -1^|n|/(n+1) $
$sqrt((2-root(2)(5)))^2$
e spiega i relativi passaggi
Metti in ordine crescente i seguenti numeri:
log$e^4$+log$e^5$
tan$16/9\pi$
2
$sqrt(38)$
logaritmo in base 10 di 0,00001
$(1+1/120)^120$
1
e=numero di nepero
$(((100),(98)))/(((33),(32)) ((25),(24)))$
$-(\sum_{n=2}^oo 1/2^n)$
$-(\sum_{n=-4}^-2 -1^|n|/(n+1) $
$sqrt((2-root(2)(5)))^2$
e spiega i relativi passaggi
Risposte
1) $ln(e^4)+ln(e^5)=4*ln(e)+5*ln(e)=4*1+5*1=9$
2) $tan((16)/9pi)=tan(7/9pi)\ =>\ tan(3/4pi)\ (sen(3/4pi))/(cos(3/4pi))\ -1
3) $2$
4) $6
5) $log_(10) 10^(-5)=-5*log_(10) 10=-5$
6) $2.6<(1+1/120)^120
7) $1$
8) $e$
9) $(((100),(98)))/(((33),(32)) ((25),(24)))=((100*99)/(1*2))/((33)/1*(25)/1)=(50*99)/(33*25)=2*3=6$
10) $-(\sum_{n=2}^oo 1/2^n)=-1/2$
11) $-(\sum_{n=-4}^-2 -1^|n|/(n+1)=-(-(1^|-4|)/(-4+1)-(1^|-3|)/(-3+1))-(1^|-2|)/(-2+1))=-(-1/(-3)-1/(-2)-1/(-1))=-11/6$
12) $sqrt((2-sqrt(5))^2)~=sqrt((2-2,25)^2)=|(2-2,25)|=0.25$
Ordiniamoli ...
5) $-5$
11) $-11/6$
2) $-1<-0.6$
10) $-1/2$
12) $0.25$
7) $1$
3) $2$
6) $2,6
8) $e$
9) $6$
4) $6<7$
1) $9$
Cordialmente, Alex
2) $tan((16)/9pi)=tan(7/9pi)\ =>\ tan(3/4pi)
3) $2$
4) $6
5) $log_(10) 10^(-5)=-5*log_(10) 10=-5$
6) $2.6<(1+1/120)^120
7) $1$
8) $e$
9) $(((100),(98)))/(((33),(32)) ((25),(24)))=((100*99)/(1*2))/((33)/1*(25)/1)=(50*99)/(33*25)=2*3=6$
10) $-(\sum_{n=2}^oo 1/2^n)=-1/2$
11) $-(\sum_{n=-4}^-2 -1^|n|/(n+1)=-(-(1^|-4|)/(-4+1)-(1^|-3|)/(-3+1))-(1^|-2|)/(-2+1))=-(-1/(-3)-1/(-2)-1/(-1))=-11/6$
12) $sqrt((2-sqrt(5))^2)~=sqrt((2-2,25)^2)=|(2-2,25)|=0.25$
Ordiniamoli ...
5) $-5$
11) $-11/6$
2) $-1<-0.6$
10) $-1/2$
12) $0.25$
7) $1$
3) $2$
6) $2,6
9) $6$
4) $6<7$
1) $9$
Cordialmente, Alex