Confusione valore assoluto nel dominio

rita212
ciao ragazzi vado un po in panico con la ricerca del dominio in uno studio di funzione dove è presente il modulo...voglio dire so fare le disequazioni con il modulo ma non so come comportarmi quando ho la ricerca del campo di esistenza della funzione...mi aiutate a schiarirmi le idee please... :cry:

Risposte
axpgn
Posta un esempio e come lo svolgi ... e poi vediamo ...

CaMpIoN
Il valore assoluto è la funzione
\(\displaystyle y=|x| \)
Questa è definita ovunque, cioè il dominio è $\mathbb{R}$, cio' significa che di per se in una composizione di funzioni non occorre per esso considerare nessuna condizione di esistenza. Le cose cambiano se invece lo richiedono le funzioni composte contenete il valore assoluto, ad esempio come la funzione radice quadrata:
\(\displaystyle y=\sqrt{|x|} \)
Composizione tra la funzione valore assoluto sopra e la funzione $\sqrt{x}$.
In effetti in questo caso è anche un vantaggio, infatti l'unica condizione di esistenza da porre' è che l'argomento della radice quadrata sia positivo o uguale a zero
\(\displaystyle |x|\geq 0 \)
E questo proprio per le proprietà della funzione valore assoluto è una condizione sempre verificata, così il dominio è tutto $\mathbb{R}$, al contrario se vi fosse stata solo la $x$ come la funzione stessa il dominio era solo $\mathbb{R}^+$, ovvero $x\geq 0$.
Posta la funzione che ti ha dato difficoltà nel calcolo del dominio.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.