Commutatività operazioni dell'analisi

Antimius

Chi mi aiuta a fare un riepilogo sulle condizioni sufficienti affinché le operazioni nella tabella commutino fra di loro?
Intanto, inizio. Mi risparmio l'integrale di Lebesgue perché l'ho appena iniziato.

Integrale-integrale: si può sempre invertire per funzioni integrabili secondo Riemann (anche in senso generalizzato?)
Integrale-derivata: se \(\displaystyle f \in C^0 \) sul suo dominio e se è \(\displaystyle C^1 \) rispetto alla x, sull'intervallo di integrazione, posso commutare.
Integrale-serie: noto teorema di passaggio al limite sotto il segno di integrale (che vale anche in senso generalizzato, purché l'insieme di integrazione sia limitato)
Integrale-limite: come prima (anzi, il teorema sulle serie è un corollario di quello sulle successioni); nel caso di limite di funzioni, credo sia sufficiente che la funzione integranda sia continua, oppure si può formulare un teorema analogo con ipotesi di uniformità (rispetto alla variabile di integrazione) del limite.
Derivata-derivata: teorema di Schwarz
Derivata-serie: teorema di passaggio al limite sotto il segno di derivata
Derivata-limite: per il limite di successioni è sempre il teorema di passaggio al limite sotto il segno di derivata; per il limite di funzioni, si può formulare un teorema analogo con ipotesi di uniformità del limite della derivata ecc.
Serie-serie: ?
Serie-limite: ?
Limite-limite: successione-funzione: c'è un teorema che garantisce la commutatività, nel caso in cui la successione di funzioni converga uniformemente e \(\displaystyle \forall n \) la funzione ammette limite finito \(\displaystyle l_n \) per \(\displaystyle x \to x_0 \);
negli altri due casi ho enunciato un teorema analogo al precedente senza troppa difficoltà.

Ogni appunto e/o indebolimento delle ipotesi è ben accetto :-D
Dove ho lasciato il punto interrogativo è perché ancora devo pensarci.
Per ora ho fatto un riassunto generale. Poi, se sono stato poco chiaro, enuncio i teoremi che ho formulato in analogia a quelli noti.

Risposte
Antimius
Up

salemgold
Anche io sarei molto interessato ai teoremi per comprendere questa tabella. Sarebbe bello avere in questo topic una lista di teoremi per "scambiare"/"portare limiti all'interno di" derivate, integrali, sommatorie...

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.