Chiarimento funzioni trigonometriche
Giorno a tutti. Ho una domanda che probabilmente risulterà stupida ai più ma è un dubbio che mi è sempre rimasto. Per rappresentare e spiegare le funzioni trigonometriche nei libri si è sempre utilizzata la circonferenza unitaria, ma perchè? Se il raggio fosse maggiore o minore di 1 come cambierebbero le cose? Sempre che cambino.
Risposte
Ciao,
non cambia nulla. Infatti il seno è definito come il rapporto tra il segmento verticale di proiezione sull'asse $x$ e il raggio della circonferenza. Si considera il raggio unitario solo per avere $1$ al denominatore e semplificare le definizioni. Analogamente per il coseno.
non cambia nulla. Infatti il seno è definito come il rapporto tra il segmento verticale di proiezione sull'asse $x$ e il raggio della circonferenza. Si considera il raggio unitario solo per avere $1$ al denominatore e semplificare le definizioni. Analogamente per il coseno.

Adesso suppongo che questa circonferenza sia di raggio $\rho$ ($\rho>0$) e quindi per definizione di seno esso sarà uguale a $(RP)/\rho$
Nel caso in cui $\rho=1$ si ottiene che il seno è uguale al segmento $RP$, ma questa credo sia una sorta di convenzione perché considerando un'altra circonferenza sul medesimo disegno è evidente che i 2 triangoli sono simili ed hanno tutti gli angoli uguali ed i lati corrispondenti in proporzione, quindi se il raggio della seconda circonferenza fosse $a*\rho$ ($a>0$) avresti semplicemente $(a*RP)/(a*\rho)$
Grazie per le risposte!