Calcolo di aree tra due equazioni
salve ragazzi ho risolto questo esercizio ma non ho la soluzione e non so se il risultato è corretto:
"calcolare l'area del dominio D compresa tra le curve di equazione $y=(x-1)^2$ e $y=2x-x^2$"
-ho calcolato il dominio che corrisponde a R per entrambe le funzioni
-ho messo a sistema le due equazioni e ho trovato l'equazione $-2x^2+4x-1$
-ho calcolato i punti in cui si annulla e poi ho scritto l'integrale definito,limitato tra i due punti trovati precedentemente,e ho trovato l'area D
è giusto il procedimento?
"calcolare l'area del dominio D compresa tra le curve di equazione $y=(x-1)^2$ e $y=2x-x^2$"
-ho calcolato il dominio che corrisponde a R per entrambe le funzioni
-ho messo a sistema le due equazioni e ho trovato l'equazione $-2x^2+4x-1$
-ho calcolato i punti in cui si annulla e poi ho scritto l'integrale definito,limitato tra i due punti trovati precedentemente,e ho trovato l'area D
è giusto il procedimento?
Risposte
"novello":
salve ragazzi ho risolto questo esercizio ma non ho la soluzione e non so se il risultato è corretto:
"calcolare l'area del dominio D compresa tra le curve di equazione $y=(x-1)^2$ e $y=2x-x^2$"
-ho calcolato il dominio che corrisponde a R per entrambe le funzioni
-ho messo a sistema le due equazioni e ho trovato l'equazione $-2x^2+4x-1$
-ho calcolato i punti in cui si annulla e poi ho scritto l'integrale definito,limitato tra i due punti trovati precedentemente,e ho trovato l'area D
è giusto il procedimento?
yes

Ah domanda..nell'integrale definito....chi è $f(x)$ in$ int_a^b f(x)dx$ ?
$f(x)=-2x^2+4x-1 $ giusto?
Giusto

ok allora perfetto
