Calcolare il volume di un solido
Ciao
Sto trovando problemi nel calcolo di questo volume di solido:
$T={(x,y,z) R^3: x^2 + y^2 <= 4 , y -z +1 >=0 , z>= -4}$
sto guardando:
http://it.wikipedia.org/wiki/Teoremi_di_Pappo-Guldino
passo a coordinate cilindriche:
$x= \rho cos \theta$
$y = \rho sin \theta$
$z=z$
quindi quel T diviene:
$-2<= \rho <= 2$
$z>=-4$ con $\rho sin \theta -z +1 >=0$ e in $z$ posso mettere direttamente $4$?
Scusate, è il mio primo esercizio e vorrei farlo per passi!
Grazie forum!
Sto trovando problemi nel calcolo di questo volume di solido:
$T={(x,y,z) R^3: x^2 + y^2 <= 4 , y -z +1 >=0 , z>= -4}$
sto guardando:
http://it.wikipedia.org/wiki/Teoremi_di_Pappo-Guldino
passo a coordinate cilindriche:
$x= \rho cos \theta$
$y = \rho sin \theta$
$z=z$
quindi quel T diviene:
$-2<= \rho <= 2$
$z>=-4$ con $\rho sin \theta -z +1 >=0$ e in $z$ posso mettere direttamente $4$?
Scusate, è il mio primo esercizio e vorrei farlo per passi!
Grazie forum!
Risposte
Non puoi farlo con Guldino-Pappo, non è un solido di rotazione.
Ah, con quale metodo potrei farlo?
Integrando su \(T\) la funzione \(f(x,y,z)=1\), ad esempio.
E riportare come dominio in coordinate cilindriche come ho scritto nel primo post?
"bartsimpson":
E riportare come dominio in coordinate cilindriche come ho scritto nel primo post?
Ah, non so... PLe coordinate cilindriche potrebbero essere una buona idea.
Prova a vedere come ti esce più semplice l'integrale.
