Analisi matematica 1

benedettaciao1
Buongiorno a tutti,mi servirebbe un aiuto con questo esercizio :Determinare, se esistono, max, sup, min, inf in R dei seguenti sottoinsiemi di R:
(b) A = x= (2n-3)/n^2 con N appartenente ad N .
Io credo di dover determinarei valori di n ma non so se porre la x uguale a 0 ???

Risposte
garnak.olegovitc1
Salve benedettaciao,
stai scherzando, il multi posting è vietato dal regolamento (nel tuo caso è un tri-posting, sino ad ora ho incontrato un bi-posting), WOW:

post572186.html#p572186
post572179.html#p572179
post571991.html#p571991

Cordiali saluti

Seneca1
Perché dici di porre $x = 0$ ? Hai provato a studiare un po' la successione $x_n = (2 n - 3 )/n^2$ ?

benedettaciao1
non abbiamo ancora fatto le successioni pero ho provato a sostituire i primi numeri naturali ad n e mi viene limitato inferiormente e illimitato inferiormente....booh speriamo sia cosi!!grazie ....ho pubblicato piu volte la domanda per sbaglio...scusate!

Seneca1
Puoi vedere facilmente che, per $n >= 2$, $x >= 0$. Per $n = 1$ hai che $x = -1$ che è quindi il minimo del tuo insieme.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.