Aiuto con i limiti
ciao, qualcuno mi potrebbe aiutare con la risoluzione dei limiti? grazie mille!
1.$\lim_{x \to \infty} (sqrt(x^2+x)-x)$
2.$\lim_{x \to \infty} \frac{e^x}{e^x -1}$
3.$\lim_{x \to \infty} log sqrt(\frac {x^2+1}{x+1})$
per il primo io facevo la razionalizzazione (sottointeso il lim):
$\frac{(sqrt(x^2+x)-x)(sqrt(x^2+x)+x)}{(sqrt(x^2+x)+x)} = frac{x}{sqrt(x(x+1))+x}$ e poi però mi usciva sbagliato.
il secondo invece facevo così:
$\frac {\lim_{x \to \infty} e^x}{\lim_{x \to \infty} (e^x -1)} = \frac {\lim_{x \to \infty} e^(\lim_{x \to \0}x)}{\lim_{x \to \infty}e^(\lim_{x \to \0}x)- \lim_{x \to \infty} 1}$
essendo $\lim_{x \to \infty} 1 = 1$ (giusto?!) mi esce : $\frac{1}{1-1} = infty$ e invece deve uscire $1$
1.$\lim_{x \to \infty} (sqrt(x^2+x)-x)$
2.$\lim_{x \to \infty} \frac{e^x}{e^x -1}$
3.$\lim_{x \to \infty} log sqrt(\frac {x^2+1}{x+1})$
per il primo io facevo la razionalizzazione (sottointeso il lim):
$\frac{(sqrt(x^2+x)-x)(sqrt(x^2+x)+x)}{(sqrt(x^2+x)+x)} = frac{x}{sqrt(x(x+1))+x}$ e poi però mi usciva sbagliato.
il secondo invece facevo così:
$\frac {\lim_{x \to \infty} e^x}{\lim_{x \to \infty} (e^x -1)} = \frac {\lim_{x \to \infty} e^(\lim_{x \to \0}x)}{\lim_{x \to \infty}e^(\lim_{x \to \0}x)- \lim_{x \to \infty} 1}$
essendo $\lim_{x \to \infty} 1 = 1$ (giusto?!) mi esce : $\frac{1}{1-1} = infty$ e invece deve uscire $1$
Risposte
Per il primo nell'ultimo passaggio metti in evidenza all'interno della radice il termine $x^2$ per poi portarlo fuori quindi in valore assoluto e distinguendo i casi $+oo$ e $-oo$.
Per il secondo metti in evidenza sia al numeratore che al denominatore il termine $e^x$
Anche per il terzo metti in evidenza all'interno della radice il termine di grado maggiore sia al numeratore sia al denominatore e poi continui.
Per il secondo metti in evidenza sia al numeratore che al denominatore il termine $e^x$
Anche per il terzo metti in evidenza all'interno della radice il termine di grado maggiore sia al numeratore sia al denominatore e poi continui.