Mcd e mcm in anello fattoriale
Sia A un anello fattoriale e sia $ a $ e $ b $ elementi non nulli. Siano $ d= MCD(a,b) $ e $ m=MCM(a,b) $ Provare che $ ab $ e $ dm $ sono elementi associati.
Allora... $ a=da_1 $ e $ b=db_1 $ quindi $ ab=d(a_1db_1) $ Notando che $ a_1db_1 $ è un multiplo comune di $ a $ e $ b $ e usando la definizione di mcm $ a_1db_1=mk $ da cui $ ab=dmk $ Ora se $ k $ fosse invertibile avrei finito ma non so come provarlo...
Allora... $ a=da_1 $ e $ b=db_1 $ quindi $ ab=d(a_1db_1) $ Notando che $ a_1db_1 $ è un multiplo comune di $ a $ e $ b $ e usando la definizione di mcm $ a_1db_1=mk $ da cui $ ab=dmk $ Ora se $ k $ fosse invertibile avrei finito ma non so come provarlo...

Risposte
$ m $ divide $ ab $ cioè $ m=abh=dmkh $ ovvero $ 1=k(dh) $ e $ k $ è invertibile. Fatto.
