Ideali primi e/o massimali di $\mathbb{Z}[X]$
Ciao a tutti
ho dei problemi nello stabilire quando un ideale di \(\mathbb{Z}[X]\) é primo o/e massimale. Per esempio il seguente esercizio:
Siano \(I=(X^2+X+1, X+1), J=(X^2+X+2, X+1)\) ideali di \(\mathbb{Z}[X] \) stabilire se sono primi e/o massimali.
Dalla teoria so che se il quoziente \(\mathbb{Z}[X]/I\) é integro (risp. un campo) allora \(I\) é primo (risp. massimale) ed inoltre che, essendo qui in un dominio, se \(I\) é massimale allora é anche primo. Però determinare questo quoziente non é qualcosa che mi rimane semplice da calcolare
quindi mi chiedevo se ci fosse un altro metodo risolutivo per questa tipologia di esercizio.

ho dei problemi nello stabilire quando un ideale di \(\mathbb{Z}[X]\) é primo o/e massimale. Per esempio il seguente esercizio:
Siano \(I=(X^2+X+1, X+1), J=(X^2+X+2, X+1)\) ideali di \(\mathbb{Z}[X] \) stabilire se sono primi e/o massimali.
Dalla teoria so che se il quoziente \(\mathbb{Z}[X]/I\) é integro (risp. un campo) allora \(I\) é primo (risp. massimale) ed inoltre che, essendo qui in un dominio, se \(I\) é massimale allora é anche primo. Però determinare questo quoziente non é qualcosa che mi rimane semplice da calcolare

Risposte
"arnett":
Che questi due non sono massimali mi sembra abbastanza facile
Invece, l'ideale $J$ mi sembra massimale.
Infatti, $ZZ[X]//J$ e' un campo di due elementi.