Grafi connessi
Spero di non aver sbagliato la collocazione di questo quesito, che propongo:
Supponiamo di avere un Grafo (non orientato) G connesso. In G tutti i nodi sono di grado pari. E' vero o falso che togliendo un lato qualsiasi il grafo G' ottenuto resta connesso?
PS:Mi riservo di dare la mia idea alla fine della discussione
Supponiamo di avere un Grafo (non orientato) G connesso. In G tutti i nodi sono di grado pari. E' vero o falso che togliendo un lato qualsiasi il grafo G' ottenuto resta connesso?
PS:Mi riservo di dare la mia idea alla fine della discussione
Risposte
In un qualsiasi grafo semplice, siccome ogni lato tocca esattamente due vertici, la somma dei gradi dei vertici è due volte il numero di lati.
Se tu potessi disconnettere il tuo grafo togliendo un lato allora nel grafo G' così ottenuto prendi una componente connessa H; tutti i gradi dei vertici di H tranne uno sono pari. Ma allora la somma dei gradi dei vertici di H è dispari, assurdo.
Se tu potessi disconnettere il tuo grafo togliendo un lato allora nel grafo G' così ottenuto prendi una componente connessa H; tutti i gradi dei vertici di H tranne uno sono pari. Ma allora la somma dei gradi dei vertici di H è dispari, assurdo.
Intanto grazie per la risposta, attendo altre idee, poi esporrò la mia