Dimostrazione elementare della congettura di Fermat
L'equazione a^n+b^n=c^n equivale a (a^n/2)^2+(b^n/2)^2=(c^n/2)^2 da cui (a^n/2)^2=(c^n/2)^2-(b^n/2)^2=
(c^n/2+b^n/2)(c^n/2-b^n/2) e moltiplicando per (c-b) (c-b)(a^n/2)^2=(c^n/2+b^n/2)(c^n/2-b^n/2)(c-b).
L'equazione è verificata se lo sono le due uguaglianze (a^n/2)^2=(c^n/2+b^n/2)(c-b) e (c^n/2-b^n/2)=c-b.
Se n>2 non esistono soluzioni intere perché la differenza fra potenze di numeri interi positivi con esponente superiore a 1 è maggiore di quella con esponente uguale a 1,cioè è sempre (c^n/2-b^n/2)>c-b per n>2.
(c^n/2+b^n/2)(c^n/2-b^n/2) e moltiplicando per (c-b) (c-b)(a^n/2)^2=(c^n/2+b^n/2)(c^n/2-b^n/2)(c-b).
L'equazione è verificata se lo sono le due uguaglianze (a^n/2)^2=(c^n/2+b^n/2)(c-b) e (c^n/2-b^n/2)=c-b.
Se n>2 non esistono soluzioni intere perché la differenza fra potenze di numeri interi positivi con esponente superiore a 1 è maggiore di quella con esponente uguale a 1,cioè è sempre (c^n/2-b^n/2)>c-b per n>2.
Risposte
ma certamente
Non credevo che fosse possibile dimostrare la congettura di Fermat in dieci righe. Tu ci sei riuscito! Congratulazioni.