Sfida
Chi riesce a risolvere l' equazione:
2+x-(1/2)x*ln{x}=0
Buona fortuna!
2+x-(1/2)x*ln{x}=0
Buona fortuna!
Risposte
\(\displaystyle f(10)>0 \)
\(\displaystyle f(12)<0 \)
\(\displaystyle \phi _{NR}\left( x \right)=x-\frac{2+x-\frac{1}{2}x\ln x}{\frac{1}{2}\left( 1-\ln x \right)} \)
\(\displaystyle \phi _{NR}\left( x \right)=-2\frac{\left( 2+x \right)}{1-\ln x} \)
\(\displaystyle \phi _{NR}\left( 10 \right)=10,7479 \)
\(\displaystyle \phi _{NR}\left( 10.7479 \right)=10,7280 \)
\(\displaystyle \phi _{NR}\left( 10,7280 \right)=10,7280 \)
\(\displaystyle \xi =10,7280 \)
\(\displaystyle f(12)<0 \)
\(\displaystyle \phi _{NR}\left( x \right)=x-\frac{2+x-\frac{1}{2}x\ln x}{\frac{1}{2}\left( 1-\ln x \right)} \)
\(\displaystyle \phi _{NR}\left( x \right)=-2\frac{\left( 2+x \right)}{1-\ln x} \)
\(\displaystyle \phi _{NR}\left( 10 \right)=10,7479 \)
\(\displaystyle \phi _{NR}\left( 10.7479 \right)=10,7280 \)
\(\displaystyle \phi _{NR}\left( 10,7280 \right)=10,7280 \)
\(\displaystyle \xi =10,7280 \)
Beh, facile... Conoscendo un po' di Calcolo e di funzioni speciali.