legenda
\(\lceil{x}\rceil=n \in \mathbb{N} \mid x \le n < x+1\)
\(\lfloor{x}\rfloor=n \in \mathbb{N} \mid x \ge n > x-1 \)
soluzione
\[N=
\begin{cases}
\sum \limits_{i=0}^{\lceil{\frac{n}{2}}\rceil-\lceil{\frac{n}{3}}\rceil-1}\Large\lceil{\normalsize\dfrac{n-1-6i}{4}}\Large \rceil \,\,\,\normalsize \text{se} \,\,\, n \equiv 1 \pmod{2}\\
\,\,\,\\
\sum \limits_{i=0}^{\lceil{\frac{n}{2}}\rceil-\lceil{\frac{n}{3}}\rceil-1}\Large\lceil{\normalsize\dfrac{n-4-6i}{4}}\Large \rceil \,\,\,\normalsize \text{se} \,\,\, n \equiv 0 \pmod{2}
\end{cases}\]
Da qui si può anche ricavare una formula diretta (senza sommatorie) ma vanno distinti più casi:
\[\begin{array}{1}
\text{se} \,\,\, n \equiv 1 \pmod{2} :\\
\,\,\\
N=\begin{cases}
\dfrac{\Large(\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil)\,\,(\normalsize n - 3\Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize + 3 \Large\lceil{\normalsize \dfrac{n}{3}\Large\rceil \normalsize +3 \Large)\normalsize}}{4} \,\,\,\, \text{se} \,\,\,\, \Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil \normalsize \equiv 0 \pmod{2}\\
\,\,\\
\,\,\\
\,\,\\
\dfrac{\Large(\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil)\,\,(\normalsize n - 3\Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize + 3 \Large\lceil{\normalsize \dfrac{n}{3}\Large\rceil \normalsize +2 \Large)\normalsize}}{4} + \dfrac{\Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil \normalsize -1}{4} \,\,\,\, \text{se}\,\,\,\, \Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil \normalsize \equiv 1 \pmod{2} \,\,\,\, \text{e}\,\,\,\, n \equiv 1 \pmod{4}
\,\,\\
\,\,\\
\,\,\\
\,\,\\
\dfrac{\Large(\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil)\,\,(\normalsize n - 3\Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize + 3 \Large\lceil{\normalsize \dfrac{n}{3}\Large\rceil \normalsize +2 \Large)\normalsize}}{4}+ \dfrac{\Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil \normalsize +1}{4} \,\,\,\, \text{se}\,\,\,\, \Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil \normalsize \equiv 1 \pmod{2} \,\,\,\, \text{e}\,\,\,\, n \equiv 3 \pmod{4}
\end{cases}
\\
\,\,\\
\,\,\\
\text{se} \,\,\, n \equiv 0 \pmod{2} :\\
\,\,\\
N=\begin{cases}
\dfrac{\Large(\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil)\,\,(\normalsize n - 3\Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize + 3 \Large\lceil{\normalsize \dfrac{n}{3}\Large\rceil)\normalsize}}{4} \,\,\,\, \text{se} \,\,\,\, \Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil \normalsize \equiv 0 \pmod{2}\\
\,\,\,\\
\,\,\\
\,\,\\
\dfrac{\Large(\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil)\,\,(\normalsize n - 3\Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize + 3 \Large\lceil{\normalsize \dfrac{n}{3}\Large\rceil \normalsize -1 \Large)\normalsize}}{4} + \dfrac{\Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil \normalsize -1}{4} \,\,\,\, \text{se}\,\,\,\, \Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil \normalsize \equiv 1 \pmod{2} \,\,\,\, \text{e}\,\,\,\, n \equiv 0 \pmod{4}
\,\,\\
\,\,\\
\,\,\\
\,\,\\
\dfrac{\Large(\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil)\,\,(\normalsize n - 3\Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize + 3 \Large\lceil{\normalsize \dfrac{n}{3}\Large\rceil \normalsize -1 \Large)\normalsize}}{4}+ \dfrac{\Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil \normalsize +1}{4} \,\,\,\, \text{se}\,\,\,\, \Large\lceil{\normalsize \dfrac{n}{2}}\Large\rceil \normalsize - \Large\lceil{\normalsize \dfrac{n}{3}}\Large\rceil \normalsize \equiv 1 \pmod{2} \,\,\,\, \text{e}\,\,\,\, n \equiv 2 \pmod{4}
\end{cases}
\end{array}
\]
nel caso voleste verificare la formula con sommatorie metto qui un codice in python:
import math
k=int(input())
t= math.ceil(k/2)-math.ceil(k/3)
x=range(0,t)
def b(n):
if k % 2 == 0:
return (k - 4 - 6*n)/4
else:
return (k-1-6*n)/4
def summ(x):
e=0
for j in x:
e += math.ceil(b(j))
return e
print(summ(x))
per verificare l'uguaglianza tra la formula con le somme e quella diretta invece c'è questo, che restituisce la differenza tra le due:
import math
k=int(input())
t= math.ceil(k/2)-math.ceil(k/3)
x=range(0,t)
def b(n):
if k % 2 == 0:
return (k - 4 - 6*n)/4
else:
return (k-1-6*n)/4
def summ(x):
e=0
for j in x:
e += math.ceil(b(j))
return e
def c(x):
u=0
for i in x:
u += b(i)
return u
def res(n):
if t % 2 == 0:
return t/4
if t % 2 == 1 and k % 4 == 0:
return (t-1)/4
if t % 2 == 1 and k % 4 == 1:
return (t-1)/4
if t % 2 == 1 and k % 4 == 2:
return (t+1)/4
if t % 2 == 1 and k % 4 == 3:
return (t+1)/4
ress=res(0)
def lsumml(x):
return c(x)+ress
print(lsumml(x)-summ(x))