Pratical numbers
A natural number $n$ is pratical if and only if, for all $k<=n$, $k$ is the sum of distinct proprer divisors of $n$.
All even perfect numbers are pratical.
In fact, wheter or not the number $2^n-1$ is a prime number, the number $m=2^(n-1)(2^n-1)$ is pratical for all $n=2, 3, 4, ...$
Prove.
Cordialmente, Alex
All even perfect numbers are pratical.
In fact, wheter or not the number $2^n-1$ is a prime number, the number $m=2^(n-1)(2^n-1)$ is pratical for all $n=2, 3, 4, ...$
Prove.
Cordialmente, Alex
Risposte
Un’ idea:
Come?
Hai ragione saggio Alex… il resto torna?
Sì, mi pare di sì, mi sembra analogo a quello che ho io.
